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The accurate interpretation of in vivo magnetic resonance spec-
troscopy (MRS) spectra requires a complete understanding of the
associated noise-induced errors. In this paper, we address the
effect of complex correlated noise patterns on the measurement of
a set of peak parameters. This is examined initially at the level of
a single spectral analysis followed by addressing the noise-induced
errors associated with determining the signal parameters from the
peak parameters. We describe a relatively simple method for
calculating these errors for any correlated noise pattern in terms of
the noise standard deviation and correlation length. The results
are presented in such a way that an estimate of the errors may be
made from a single MRS spectrum. We also explore how, under
certain circumstances, the lineshape of the signal may be deter-
mined. We then apply these results to reexamine a set of in vivo
31p MRS spectra obtained from rat brain prior to and following
moderate fluid percussion injury. The approach outlined in this
paper will demonstrate how meaningful results may be obtained
from spectra where the signal-to-noise ratio (SNR) is quite small
and where knowledge of the precise shape of the signal and the
detail of the noise pattern is unknown. In essence, we show how to
determine the expected errors in the spectral parameters from an
estimate of the SNR from a single spectrum, thereby allowing a
more discriminative interpretation of the data. © 1998 Academic Press

Key Words: correlation length; correlated noise; errors; magnetic
resonance spectroscopy; signal; standard deviations; traumatic
head injury.

INTRODUCTION

energy metabolites PCr, ATP, and €alculated from area
analysis {).

As with any scientific technique howevet'P MRS has
strengths and limitations. If these strengths and limitations ar
not fully appreciated by MRS users, problems may arise witt
respect to quantification and subsequent interpretation of re
sults concerning a particular physiological or pathophysiolog:
ical state. We recently reporte@)(that the intrinsic errors of
typical 3'P MRS estimates of free [Md] in rat brainin vivo
are sufficiently large to cast doubt on the significance of
previously published results showing its decline in associatiol
with moderate brain injury3). We reached this conclusion by
investigating the intrinsic errors associated with chemical shif
assignments fronin vivo 3P MRS spectra. Using simulated
spectra over a range of 1.2 ppm, a relationship between tt
standard deviation of the chemical shift positier(n;) and
the signal-to-noise ratio (SNR) was derived empirically as
described by

o(m,) * SNR= 0.090. [1]

Although the focus of this paper is 6P MRS spectra, the
results are quite general and may be applied to any form c
spectroscopy. Conventionally, effort has been directed towarc
minimizing noise levels in order to optimize the signal but in
some instances, and particulaily vivo, the noise levels are
higher than acceptable. It is therefore critical to know the

The app"ca’[ion of phosphorus magnetic resonance Spectﬁ(ij@.itations of such measurements. In addition, the noise pat

copy E'P MRS) to the study of metabolism and bioenergetid§rns may be quite complex and possess a frequency depe
in vivo has grown stead”y over the past two decades. TH@I’]CE, in which case we are dealing with correlated noise.

enticement of using’® MRS over conventional metabolic Previous studies examining the accuracy and precision ¢
analyses arises from its non-invasive and non-destructive §#gnal parameter measurements have focused on the errors
ture, which permits continuous spectra to be obtained fromdgtermining a specific set of parameters. In particular, Posen
single organ or tissue in real-time. Routinely, free intracellul4f) examined the standard deviation of the height and positio
magnesium concentration (free [ﬁ’rg) and intracellular pH of a Gaussian and Lorentzian Shaped signal embedded in whi

are calculated from chemical shift assignments, and the ratiodsfuncorrelated noise. Chex al. (5) extended Posener’s work
to include the linewidth standard deviation. They concludec

1 To whom correspondence should be addressed. that the theoretical calculations of the standard deviations wetr
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FIG. 1. A typical 3P MRS spectrum obtained from a rat brainvivo. From high to low frequency (left to right) we observe phosphomonoesters, inorgani
phosphate (f, phosphodiesters, phosphocreatine (PCr) and the three phosphates of-A&R B-ATP). The frequency (in ppm) is relative to the PCr peak.

at least five times smaller than their experimental results ob- IN VIVO MRS SPECTRA
tained from FT ICR and FT NMR spectra.

We shall be extending this approach to address the effect ofA typical in vivo rat brain®P MRS spectrum is shown in
complex correlated noise patterns on the errors in determinifg. 1, where the phosphocreatine (PGy), a-, and g-ATP
peak parameters and the mean values associated with a lygsks (in decreasing frequency) are distinct, yet superimpose
number of measurements from different spectra where thpon a complex noise spectrum. All spectra were subjected t
signal is identical in each spectrum but has a different noisezero phase correction on the PCr peak and a first order pha
pattern. We shall also show how to determine the appropria@rrection on then-ATP peak and were multiplied with an
form of the errors in terms of the maximum noise height argkponential function corresponding to a 25 Hz line broadening
the SNR from knowledge of the mean standard deviation aPRgior to determining chemical shift assignments, we remove
the correlation length of the noise. Conventionally, the SNR ike broadening component attributed to the immobile phosphc
defined as the height of the signglivhereo? is proportional lipids in the bone and membranes by subtracting a 400 H
to the sum of the squares of the residuals—for more detail d@®adening (convolution difference) in order to improve the
Ref. (6). We shall find it more useful, however, from a practicahccuracy of resonance amplitude measurements. Figure 2
point of view, to define the SNR very simply as the ratio of thristrates two noise patterns, which are portions’'sf MRS
signal height/maximum noise height. spectra some distance from tA#¥ peak region at a 10-fold

The current study is an extension of our previous w@k (increased amplification. These specific noise patterns, mo:
and includes a critical examination of the noise-induced errdikgely arising from post-acquisition line broadening, are ob-
associated with complex correlated noise patterns in specserved in a peak free region of the MRS spectrum and accou
This will be undertaken by (i) introducing the concepts ofor the observed fine structure on the signal peaks as shown
statistical theory; (i) analyzing simulated spectra of differergome detail in our earlier pape2)( Similar 3*P MRS spectra
noise patterns; (i) deriving relatively simple equations foare presented by Ingwall7( in Langendorff-perfused rat
determining the standard deviations required; (iv) comparimgarts. The origin of such noise patterns may occur throug
the mean values of the determined peak parameters, thieie broadening to improve signal-to-noise rati@. (In this
standard deviations, and correlation matrix elements obtaingaper, the origin of the noise is of little concern. In order to
from the spectra; and (v) plotting the relationship betwedackle the effect of the very characteristic noise in such spectr:
differentm values. In so doing, we hope to provide a deepere have taken an unconventional approach. We have a
insight into the significance of noise-induced errors in estimaempted to quantify a noise spectrum in terms of a mathema
ing free [Mg?*], pH, and phosphorus metabolites framvivo ical function expressed in terms of frequency and time using
3P MRS spectra. the observed noise portion of the spectrum being investigate
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FIG.2. Two examples of the noise in tf&P MRS spectra obtained from a rat brairvivo. The intensity is 10-fold greater than that in Fig. 1. The frequency
(in ppm) is relative to the beginning of the noise spectrum under investigation.

As we will demonstrate, our work may be related to the moreise mainly from the coil and the connection to the pre-
conventional approacl6). The evidence is that marg vivo amplifier. In addition, the signals plus the white noise are
3P MRS spectra contain complex correlated noise patterns ahdn processed electronically, involving amplification, fil-
it is from such spectra that information about specift® ters, and Fourier transformatiof,(9) to ultimately produce
nuclei is estimated. thein vivo spectra we consider as our starting point, with its
Nevertheless, noise would have arisen from thermal whitemplex noise background. A standard deviation and cor
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relation length characterize the noise from such spectra. \Waise peak and a single signal peak both characterized by two
shall show, using this information, how we may define thkorentzian lineshapes given by

noise in terms of a frequency and time dependent function

involving several random variables. It is this complex func-

tion which enables us to gain an insight into the likely errors fo
of any experimentally measured parameters. This back-

ground noise we shall refer to as correlated noise in this

paper. However, we wish to emphasize that whatever tMée shall choose, for the noise peakmmp= 3, npm, = 80
detailed processes involved in obtaining these spectra, BRM > Npm; = 1.9 ppm, and nm, = 0. The units of npn,
are dealing with specific spectra which unequivocally connd npn, are the same as those of the absorption scale. (The
prise NMR signals superimposed upon a complex bacRoise peak nm, value of 80 ppm? corresponds to a half-
ground of non-signal peaks. The paper uses the experim¥fidth of about 0.22 ppm, as observed in Fig. 2.) For the
tal observations to examine both the signal and non-sigr@nal we shall choosers = 10, sn, = 10 ppm 2, sm; = 2.0
components. What emerges from this work is that knowPm, and 1, = 0. These two form a single peak; when we
edge of the detailed structure of the non-signal componen@@alyze it as a single Lorentzian peak (1.4 to 2.6 ppm), we
unimportant in estimating the signal characteristics from tifPtain a very good fit that yields the valueg = 11.930

— ~2 A2 —
parameters obtained by curve fitting a non-linear equation {8-169).m; = 13.217 ppm =(0.724 ppm~), mz = 1.973 ppm
a specific peak. (0.00209 ppm), and, = 0.257 (0.183). Thatandard errors

We may confirm the noise pattern in our spectra e given in brackets. The differences between the curve

examining a portion of a spectrum where no signal peaks péed peﬁk parameters anddthi signal Ipararlneter; arﬁ far
present (see Figs. 2a and 2b). As can be seen we havareater than one or two standard errors. It is clear that these

series of peaks randomly located across the spectrum. .Isﬁgndard errors cannot _be used to dett_armme the signal
ﬁreameters from a curve fit of the peak. This paper addresses

noise may be described as noise peaks that characterize% € roblem and shows how to determine the errors in such
frequency dependence of the noise. The example in Fig. P w w ! s in su
a way that from a single spectrum we may estimate the

comprises approximately 20 noise peaks where the zero .
P bp y P S|81pal parameters from the peak parameters obtained from

phase_tends to domma}e. In general, however, thg phase{:uéve fitting. For the above spectrum comprising the two

the noise randomly varies across the spectrum, as illustrate L ks only and knowing that npy = 3 for the noise andrs

in Fig. .2b' The selectgd portion of the noise spectrum &Flo for the signal, we shall show that tlevalues for thils

approximately 10 ppm in Fig. 2a may be fitted to 19 LorenE:—ase are given as(m,) = 1.287,(m,) = 3.03 ppm 2, o(m,)

zian or Gaussian lineshapes of constant peak width (abo_m0 0239ppm andal(m )y =1 0’56 Szimilar results wiI’I occar
_ . y 4) — . .

0.22 ppm) with varying heights and' po§|t|ons but Zerﬂsing more complex noise backgrounds. Thus we are con-
phase. It was found that the Lorentzian lineshape, as §jant that we can determine the signal characteristics from
pected, gives a better fit. The maximum separation of ttgﬁe peak analysis using our determinedalues. (The “np”
noise peaks is less than approximately 1 ppm. It is the§gy «s» pefore them. values are used to differentiate be-
noise peaks which will limit the signal information we may,yeen the noise (np) and signal (s) peaks. No prefix nor-
obtain from our NMR spectra. This may be illustrateghq iy implies that them, values are obtained from the peak
further from our earlier paper, where we showed the mark%ﬂalysis.)
similarity between the observed NMR spectra and the sim-another aspect that requires consideration is the form of
ulated NMR spectra generated by a known signal superifie equation in determining the peak characteristics. This
posed upon a series of Lorentzian peaks. Not only were Wgyy he categorized into the shape and a baseline. We shall
able to replicate the spectral detail across 20 ppm, but tignsider Lorentzian and Gaussian lineshapes. In addition,
shape variability of a specific peak was clearly confirmedye need to consider the phase of the signal. In this paper the
Next we need to consider how best to extract, from gpectra have been collected in the absorption mode and no
particular NMR peak, information about the signal embeddedtempt has been made to adjust for a dispersion mode
within the peak. It is important to appreciate the fact that @mponent. Inclusion of a small dispersion mode compo-
specific peak comprises both noise and signal. To begin thent into the signal would affect the parameters obtained by
process of analyzing a specific peak, we shall curve fitfating the signal to only an absorption model. The differ-
specific shape to the data making up the peak. This will involesces may easily be determined. As an example, if the signal
fitting a nonlinear equation. In this paper we shall use matrix defined asm,, sm,, sm; = 2.000 and s, = 0, replacing
algebra to achieve this, thereby yielding a set of parameters angd m,, m;, andm, in Eq. [2], and has a 5% dispersion mode
their standard errors. The next step is to use this informationdomponent, then the;, m,, m;, andm, values obtained by
determine the signal characteristics. fitting a full absorption mode curve fit are, to a very good
This may be illustrated very simply by considering a singlapproximation,

= (Mmy(x, —my?+ 1) T M [2]
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FIG. 3. An example of a simulated spectrum with one signal embedded in a noise spectrum of Lorentzian shaped peaks generated randomly by he
position with random phase. The SNR is defined as 5:1. The curve fitted single Lorentzian lineshape peak is superimposed on the spectrum.

m, = 1.051 sn, We found that the frequency dependent baseline term did ne
improve the analysis and hence we focused on the two cast
m, = 0.28+ 0.801 s, whenm, was zero or nonzero, which resulted in analyses fo
m, = 2.085 three or four parameters. In particular, we shall show that
must be included to compensate for phase variations in th
m, = —0.0510 ;. noise. Observation of such a frequency dependent term cou

not be justified from the peaks analyzed in the spectra. Ii

. : addition, we need to bear in mind that in curve fitting it is
Varying an, does not affecim, andmg but an, does slightly .

. : important to keep the number of parameters as small as po
affect m;, m;, andm,. (A 5% dispersion mode component

. . ; ible.
most likely would be observed.) In this analysis the spectr‘Zi'lb © . . .
In our earlier paper we compared several techniques il

range was 2.0 ppm.

These would apply across the spectrum, taking into accou%?termmmg the position of the NMR peaks and showed tha

obviouslv. a different 1. value. In the present baper we arehe curve fit of a Lorentzian lineshape gave superior result
Y, ) 3 ) present pap compared with the peak picking and the SISCO line fit meth:-
concerned only with effects that vary significantly across the C o . ;
. . ods. This is understandable as the curve fit involving a line:

spectrum and hence affect each signal in the spectrum tg,a
Shape uses all the peak data. We used two programs to hant

different degree. In this work we are interested in relativ e : . .
: . . the curve fitting of non-linear equations. The Kaleidagraph
values and differences. Hence we shall not consider a disper- : . . .
. : ; : “rcommercial software, which uses a specific algorithm, gave th
sion mode component in analyzing our experimental signal . ) .
peaks equation parameters, their standard errors, the chi square, a

Another question that needs to be addressed is how otHS R values. Our own written program in Mathgmatlca used
?tnx algebra, with the equations given in this paper, anc

determines the most appropriate baseline. The answer wil duced th inf : | h lati .
- : roduced the same information plus the correlation matri

depend very much on the specific spectral range that is ber]

X eléments.

analyzed. As our approach focused on analyzing a peak, whic

contained a single NMR signal, we kept the spectral range

rather small, as explained in our earlier paper. We chose 1.2 SIMULATION OF MRS SPECTRA
ppm. We considered three baseline options described by the ] o ]
andm, terms in the equation We may simulate a typicah vivo MRS spectrum with a

single peak superimposed on a multinoise spectrum. The noi:
spectrum is chosen as a series of randomly determined noi:
m, peaks. Such a spectrum is shown in Fig. 3. The peak is

fo = (my(x, — mg)? + 1) Mg+ M, [3] composite of the noise and the signal. An analysis of the pea




PRECISION OF PARAMETERS IN MEASURING RESONANCE SPECTRA 385

is carried out assuming a specific shape of the peak, and amatical function withn parameteran,. In other words, the
of parameters with their estimated errors describing the pealpsak is defined as

evaluated. We shall define the set of parameters as a set of

values and their errors (standard deviationspbyalues. The f,=f{x,, m,m, ...,m. [4]

m; values and ther; values are very dependent on the signal

and the noise making up the spectrum across the obseryRftermination of then parameters from th€ observations
peak. Often we are more interested in usingrthealues from requires the solution of a set of non-linear equations. The
the peak analysis to estimate timevalues for the signal. This equations may be solved by expanding the function in a Taylo

may be achieved by determining the average of the peak series, thereby reducing the problem to one of a linear forn
values with the corresponding standard deviatier(sy;) val- \where

ues. These values are dependent on the signal and the average

noise across the complete spectrum, which we defingas, N

We reiterate that then; values and ther; values are for a Af, = fobs _ feac = 3 of, Am [5]
specific peak whereas the mean of a large numbeny, @Blues *o * am; '

and the corresponding(m;) values may be used to character-

ize the signal under investigation.

i=1

[e3

(denoted as matriA) is then determined, where the matrix

signal peak (&, = 5; sm, = 10 ppm % sm; = 5 ppm; sn, elements are given by

= 0), using a precise analysis for a nonlinear equation=

4.337;0, = 0.092;m, = 6.849 ppm?; o, = 0.469 ppm 2,

m; = 4.983ppm; o3 = 0.0081 ppmm, = —0.0897;0, = a,, = )

0.021.From 1000 such simulated spectra with the same signal am,

we find thato(m,) = 0.365,0(m,) = 2.36 ppm 2, o(my) =

0.0238 ppm, ando(m,) = 0.0971 whereas the mean From theA andF matrices we calculate th®M matrix, where

values @; values) arér, = 0.0877,0, = 0.571 ppm?, o5 =

0.00556 ppm, an@, = 0.0169. It is the marked differences AM = (A’A)'A'F. [7]

betweeno(m;) and o;, which for uncorrelated noise are the

same, that are a characteristic of correlated noise. In esserdd, is the matrix containing the calculated changennalues

this paper explores the differences and shows how to predast elements. The new set wfvalues is chosen using

the eight sigmas, the; values and ther(m;) values, from

specific characteristics of the background noise. Mpew = Moq + GAM, [8]
In this paper we show how to calculate: (i) thnevalues and

the corresponding; values for a single peak; (ii) the signal  where q is chosen to aid convergence and<0q = 1. At

values and the correspondingm;) values; and (iii) theiise convergence it can be shown that the valueFeR, ie., S,
value and the correlation length, which lead to a conveniepfobs _ {cal92 s 3 minimum. TheF'F value is defined as the

way to estimate ther(m;) values as functions of the noise,? yajye.
he|ght and the SNR. The(m,) values are, thus, characteristic The standard deviation of tha values is given by
of randomly multipeak correlated noise spectrum.

In this paper, spectra were simulated with a Power Macin- o = [(H™),]¥20, 9]
tosh computer using Excel (Microsoft version 5.0), Kaleida-
graph (Abelbeck version 3.0.4) and Mathematica (Wolfra - ;
Research version 2.2.2.1 and 3.0) software. Results were c@g?re theH matrix is described by
firmed with at least two independently written programs. All
spectra and graphs presented in this paper were obtained using
Kaleidagraph.

af,

[e]

H=AA. [10]

The correlation matrix elementg;;, are calculated by

CONCEPTS OF STATISTICAL THEORY ) [(HY), ]o?

We begin with a set ofQ observations which may be Pi oioj
expressed as €, x,}. In the case of an MRS spectrum

comprising a signal (or signals) and a series of noise péaksThe details of the derivations of the above equations ar

is the total height at frequency,. In order to analyze a specific provided by Hamilton 10). To determine the peak parameters

peak in the spectrum, the peak may be expressed as a mathiea large number of simulated spectra we wrote a specie

[11]
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in about 12 h when the spectral range was about 2 ppm. At — — Ju, [17]
larger spectral ranges it took much longer and easily several P
days of computing time. The program used Eq. [8], where

was chosen as 0.2 or 0.5 with 40 or 25 iterations. An approx-
imate initial set ofm values was judiciously chosen to begifVNere the spectrum ranges fram= a to u = b. If the center

the process. The values were determined using Eq. [9] wher&@f the peak, ams, is close to the mid-point of the spectral data
being analyzed, th& matrix elements may be written, for both

Lorentzian and Gaussian cases, as

2 1/2
o= {QX_ n} . [12]

Mathematica program, which could handle some 1500 spectra b oof of
ij = f
a

G =Ky Gipo=mKkip/my; Giz=my \/@kl3; G = Kuas

Q is the numk_)er of data_ points e_m_dhg number of paramgters Gy = Mo/ M2 Gops = MKy V/mz; Gya = MyKya/My:
being determined. In this work it is either 4 or 3 depending on
whether or not we treatedh, as a parameter. The-value is  Gzz = m?mykss; Ga=m; \,/EKM; Gus = Ky [18]
expressed in the absorption units. When the SNR was small
and certainly less than five the iterative process occasional —

y P e note thatH; = G;/(AxVm,) and H; = G;/

converged, in handling multi-peak noise spectra, to unrealisii 0.5 . ) .
values such as negative, andm, values. Our program was x(In[t2_]n|12) T% ;(N heln thef peskﬂlls Lorent2|a.n and Gaussian,
written to prevent this from happening. respectively. -values for both cases are.

To test our program we checked threparameters and the Lorentzian:
sigmas against the commercially available Kaleidagraph curve
fitting program which uses the Levenberg—Marquardt algo-

rithm (11). The rhos were obtained from Eq. [11]. k,, = arctafw] + 5 —
We shall now examine an MRS spectrum which comprises (1+w)
a single Lorentzian peak defined as arctafiw] W
27T a1+ w)
f m + [13] w -
= m
T (my(Xe — mg)2+ 1 @ S —
(Ma(X, 3) ) +2(1+W2)2 .
or as a single Gaussian peak defined as kis=0
k.4 = 2 arctafiw]
fo = —-In(2 - my)?) + 14 o
a mlexq n( )mZ( Xa m3) ) m4, [ ] k B aI’CtarﬁW] . W
22 T 2
wherex,, represents the observed frequency scale (in ppm), 8 8(1+w) |
= peak heightm, = 4/(linewidthf, m; = position of the w w
center of the peak (in ppm), ama, = baseline. The frequency C12(1 + wA)? * 3(1 +w?)?
interval between consecutive data points is usually a constant, -
Ax. We have definedi = (x — mg)Vm, (oru = (x — Koz =0
m;)V(In(2)m,) and henceAu = Vm,Ax (or Au = W —
V/(In(2)m,)Ax). We then define & matrix as ko, = —arctafiw] + a+wd
- _ = Ty = arctafw] w
where . W  Aw —
3(1+w?H?  3(1+ w?)?d
G ZN(M“) (afa)A 116 ks =0
i = u.
) N ami o 8mJ o k44 = 2W, —

Provided the intervals between the data points are small anderew = (spectral rangéym,/2. The total area under a
equal, Eq. [16] may be written as Lorentzian peak isn,=/"Vm, with a linewidth= 2/VvVm,.

[19]
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Gaussian:
o
kyy = \/—ﬁ erf[ \2w]
V2
w NG
Ky, = > exd —2w?] — \,E erf[ \,2w]
kl4 - \r/; el’f[W]
3w wi . 3w
ky, = — ?'F 5 exgd —2w?] + 16\Eerf[\ W]
—
> V/’ZT
Kos = W exd —w?] > erf[w]

2 erf[ N ]) In[2]

kg3 = ( 2w exd —2w?] + =
AY

k34 = O
k44 = 2W,
[20]
where, in this casey = (spectral rangey (In(2)m,)/2. The

total area under a Gaussian peakiigV/ 7/V/(In(2)m,) with a
linewidth of 2/vVm,. We note that

2,2 (*
erf[z] = = exp(—x3)dx.
NT S,

From Eg. [9] we may determine expressions for the four

standard deviations in terms of thevalues in Eq. [19] for the

387

The correlation matrix elements follow from Eq. [11] and
are

m, myAxp[1, 2]
ml)(O'lO'z
Axp[1, 3]
m1X0'10'3
JmoAxp[1, 4]
X0'10'4
mzAXp[Z, 3]
me0'20'3

2 \

P12 = o

— 2
P13 =

_ 2
P1a =

_ 2
P23 =

_ mymeAxp[2, 4]

2
P2sa =

m1X0'20'4

Axp[3, 4]

m1X0'30'4

2

P34 =

g[a] = {kBBk'yyk&S/G -
+ Kgy KoK,/ 312

p[av B] = kom/k/}ykSB + kuBk)2/8/2
- kaﬁkwk&;/z - ka‘ykﬁﬁkyﬁ
and
X = {k2,K2/8 — KooKapk2/4 + KooKapk, Kos/ 24

+ kaakﬁ’ykﬁﬁk‘y5/3 - kaﬁka7k35k75/4}l/2'

Lorentzian case and in Eg. [20] for the Gaussian case and these

are given below:

a # B # vy # dande, B, v, ands all take the values 1 to 4,
andp,, = p» = psz = pas = 1. The correlation matrixp, is

_ o 1] ) {pi}-
oy = (fac) x ¢ In the case of fitting only the threa valuesm,, m,, andm,
to the peak ifn, is not a variable) we have
m, 12 al2]
Oy, = H (fac) T o
1
93] [21] X = {—Kaak?,/ 2 + KoaKgpKyy/6 + KogKeo kg, /312
73 m, N (facy*® x 7 gla] = {kggk,,/ 2 — K&,/ 2}1'2
gl4] pla, B] = KaKpy = Kagky,.

o, = (fag¥?2 == o,
X /

In previous work by Posened), the integral values for a

[22]

where fac= Ax(m,)°-® for the Lorentzian case and fae Lorentzian lineshape were taken between plus and minus in-

Ax(In(2)m,)°-® for the Gaussian case.

finity, which give the results
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— / \ noise on the specifim;, value. These values would be deter-
01= (\"mzAX)l ’ = mined by analyzing a large number of spectra. However ir
v specific cases, and certainly framvivo measurements, spec-
M 4\@7 tral information is typically determined from a limited number

o2 = (yMAx) m Jr of spectra. If, howeverg(m,) is known or may be estimated
v from the noise pattern in a spectrum then, from a single NMF
os = (\fﬁzAX)llz 1/7270', [zglajasurement, we have at least an estimate of the error in tl
my\m, V/E asurement of then, values. Therefore the present paper

P primarily focuses on determining the(m,) values for a range
4 ' of noise patterns where the measured signal may be eith
1 Lorentzian or Gaussian in shape. The approach taken may |
P12 = P adopted for determining the errors in the parameter measur
v ments of any signal embedded in a simple or complex randor
P13 = P14 = P23 = P24 = p3s = 0. ) correlated noise pattern. This occurs in the many fields o

spectroscopy.
The equivalent set when the spectral range is very large and
when the signal is Gaussian is RESULTS
P < 05 \ Th_e results of st_atlstlcal theory can now be applied to ex:
o1 = (yIn(2)m,Ax) br 7 amining the errors in the measurementf, m,, m;, andm,

v o of any peak in a MRS spectrum. This is accomplished by
oy = (\/WAX)UZ m, 4<1> o, analyzing a 5|mul_ated spectrum generated from a speCIflc_ Nois
m, V/E pattern and a defined signal peak. As we mentioned earlier tt

= 105 challenge was to choose an appropriate frequency and tirr

( V2 ) ndent function, which was relatively simple to handle an
m, \ﬁ In(2) \/; ' @g%jharacterize most, if not all, of the observed noise pattern:
To illustrate the process and to gain an insight into the effec

o3 = ({In(2)m,Ax)*?

7.=0, that a wide range of noise patterns may have on the spectr
1 measurements, we shall begin with a noise spectrum generat
P12 = 7@ by a series of Lorentzian peaks defined as
= = = = = 0. .
P13 = P14 = P23 = P24 = P34 ) noise spectrum N * R(1) 2

n

The o; values given by Eq. [21] are only applicable for the
single peak measurement and are affected by the specific noise % {005{2776] 1

pattern near the peak being analyzed. They are a measure of the {npm,(§, — §)? + 1}
errors in the specifim, values in analyzing thpeak.They tell

1/2
us nothing about the errors in ting values for thesignal. In + sin270] Prm; (2, _26) } .
order to determine these errors we need to address the overall {npm;(3, — )" + 1}
results using then data from several spectral analyses. This [24]
leads to the mean values and the corresponding standard de-
viations,m; and o(m;). R(1) is a random number from 0O to #; the noise phase, may

Thea(m;) values may be expressed as functionsl@indS, vary from 0 to 1;N is the maximum noise heighd,, = 6,_,
the maximum noise height and the signal height, respectivelyy,gapR(1); and the gap is theaximum distance between the
by examining the appropriatAm. value. From Eq. [7], it noise peaks. The mp, = 80 ppm 2in Eq. [24] gives a noise
follows thato(m,;) and o(m,) are proportional to\N whereas peak with a half-width of close to 0.22 ppm, as observed, fo
o(m,) ando(m;) are proportional taN/S. This follows since the noise peaks, from the experimental sped¥(d.) will have
Am;, the matrix elements kM, can be shown to be propor-a mean of 0.5 and a standard deviation of ¥/@. (R(1))?
tional toN or N/S. To a good approximation, the form afm; will have a mean o% and a standard deviation of 2K%).
values reflects the form of ¥ (m, — m)? Y2 which is Similar results would be achieved with a normal distribution of
proportional toa(m;). We shall examine this in more detailrandom numbers, which would have a standard deviation @
later with an example. approximately 0.25. With random phase the noise spectrur

An experimentalist is usually interested in the two valoges will range from —N to N with a zero mean value. The range
and o(m;), whereo(m,) is a measure of the error due to thend the mean value are, of course, phase dependent. For z¢
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phase, for instance, the range is from ONtavith a mean value where thenth integral involving the gaps, b, c, etc., may be
of 0.5. written as
The noise spectrum spectral range, np(range), was chosen as
being greater than the peak spectral range analyzed. In the simu-, _
_ . n! p (n-p
lated cases of multi-peak noise the np(range) was larger than th@ (—1)P ———— g,|- . X
range below which the results were affected. In other words, by -, p!(n — p)! 0,...,0 1,...,1
increasing the noise range from the spectral range chosen, a point
was reached where a further increase of the noise range did faktre
affect the results of the peak analysis. In the case of one or three
noise peaks the approach was different, as will be explained later. 1
A very |mpo_rtant property of this type of analysis is that if g [a, b, c, ... ,r, s t] = g
N and S are increased by the same factor and the other
parameters (including the randomness of the noise spectrum) (K@ + KWz + K@Z + ...+ K" Yz YHarctar 2/ 2]
_remain unchanged, the analysis would yield an exact increase* { +(LO + LWz 4+ L@Z2 + ..+ L"227-2)og[4 + Zz]},
inmy, m,, o, 04, ando by the same facto® would increase
by th_e factor squared, whereas,, ms, o, and oz would 4 \\herer = (@+b+c+...+r1+s+t)Vm, The
remain exactly the same. expression
Also, if we introduce a frequency scale parameter so that we
may change the relative frequency which includes changing

} . [28]

npm, by npm,/(scalef, sm, by sm,/(scalef, sm; by sn, = g, - P - (n - p)‘

(scale) and\x by Ax * (scale), then the effect of changing the "o0,...,0, 1,...,1

gap in Eq. [24] by a factor and the scale by the same factor only

changes then, anda, values by 1/(factof)and them; ando;  in Eq. [28] means that withia, b, ¢, . .., r, s, t which have

values by the factor. The otzher values, namely, and o, the integral limits of 0 and 1, we hayeof them equal to O (it
valuesm, ando, values, and” ando values, remain exactly does not matter which ones) whereas- p values are equal

the same. We shall often utilize these properties in the papgy.1. Recursion formulas for thé andL values are
Next we direct our attention to the noise and its relationship

to x°. If the noise did not affect the signal in the analysis then

: obs _ gcalg2 o _- - - (0)
the expressiorx,, (o 49 would become n n=1(n=2) Qnz
noi . (m-1)
Xaose= >, (1992 = {noise spectrupf. ~ [25] m _ Q™1 [29]
N .
a m
The “noise spectrum” in Eq. [25], in general, is given by EQQ® = K@ whenn =1, 3,5, 7, ... Q© = L® whenn =
[24]. However, x7oise Varies across the spectrum due to the, 4, 6, 8, ...; anK{® = —L{© = 1.
random nature of the noise. For a single noise peak, The x2.isc (P€r ppm) for any gap value may be determined
from Eq. [27] by replacing nm, by npm, (gap¥. Below we
, N27r give nine examples using 12 terms in Eq. [27] wherewp-
Xnoise = 2 A [26] 80 ppm 2 andN = 1.

For reasons which will become apparent later, we shall con- if gap=0.500 ppmthen . (per ppm = 30.17

sider, also2.ise fOr the multi-noise peak spectrum when the if gap = 0.625 ppnthen 2. (per ppm = 20.86
phase for the noise is constant across a spectrum, as well as

when the phase varies randomly. When the phase is constant if 9ap=0.750 pPMEhen s (per ppm = 15.59

across a spectrum the average valuggf.. (per ppm *) may if gap= 0.875 ppmthenyZ,.. (per ppm = 12.28
be written as a series, namely,
if gap = 1.000 ppntheny?Zs.(per ppm = 10.05

2 M O 2 E if gap = 1.125 pprrthenyZys (per ppm = 8.46
Xnoise = W § + W da+ gap . pp Xnoise \PETI PP .
e 0 0o if gap= 1.250 ppmtheny?,..(per ppm = 7.28

2 if gap= 1.375 ppmtheny?,..(per ppm = 6.38
X G+ npmia oy dadbE [27]

if gap = 1.500 ppntheny2.<.(per ppm = 5.66.
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The same results would have been obtained from Eg. [27] by Ax and we would expect the linewidth of the correlated
replacing 1 in the integrals, Eq. [28], by the gap value ambise to be less thafx. Thus x2.sc (PPM 1) would be less

dividing x2.ise (PPmM %) by the gap value. thanN?#/(6AX) or less thar26.2N?; i.e., for the uncorrelated
When the phase varies randomly the result fgfcc noise theo, < value would be less thaN\/(#/6) = 0.7N,
(ppm 1) greatly simplifies to and this value is about 1.25 times larger than the uncorrelate
ThoissValue of N/\V/3, with a noise range of N to N.
N We may check our simulated noise spectra by determinin
Xhoise (PP ) = ——————— [30a] the x2.isc (PPM %) and the gap values. Choosingmp= 80

- / .
3Ax gapynpm, ppm %, Ax = 0.02 ppm, and gap= 1, we obtain x2,.sc

(ppm 1) = 5.85 (N = 1). Choosing a noise range of 5 ppm,
The companion equation, which measures the correlation, mgyy 5 spectral range of 1.2 ppm then from 6000 simulate
be expressed as spectra, where the noise phase is random, we obgiR.
(ppm 1) = 5.90, with a large standard deviation of 5.01, and
Xzoise a gap value of 0.994 ppm.
Xnoisd V) Xnoisd V + 8¥) = (1 + (npm,/4)81%) [30b] |t is clear that the phase, although random when examine
over a large number of spectra, may be more accurately d

From Eq. [30b], a plot 0feed V) Xnocd ¥ + 87) againsty will scribed by approximating a specific value over a limited spec
yield x2.... and npn, Ugrﬁsg EanI[Sé,Oa] with knowledge of Il range in a specific spectrum. This will be particularly true
noise " . 1

those two values, would yield the gap value. Care, howev@fhen the number of noise peaks in the spectrum under inve:

needs to be exercised in using Eq. [30b] if the spectral rangd'#ation is very small, say, less than 10. Hence this effect mus

not very large. From 1500 simulations of a 10 ppm noisl%-e taken into account in determining the form of the equatior

spectrum generated, after a small correction for a finite spectiaiP® u_ﬁid tcc)“chargctgrlze tfhehS|gnaI: ;_her:nclugon ofmhe
range. with nm, — 80 ppm-2 and gap= 0.5 yieldedy2, . — _erm will handle variations of phase within the noise spectrum

116.27 ppm (0.17 ppm) and mp = 80.75 ppm? (0.38 We found that, althougim, was very phase dependent and

ppm™2) when v ranged from O to 1 ppm in steps of 0.1 ppmg(m4) phase sensitive the other(m;) values, to a good

(The errors are given in brackets.) From Eq. [30@.cc = approximation, were independent of the phase. In addition, th
" " ise

117.1 ppm. Ideally the number of simulations should be muéﬂrm of the_‘T(mi) va!ues as functiorjs o and_S,_as predi_cted,
larger to obtain better agreement. Is only achieved using then, value in curve fitting the signal.

In addition, we have the relationship: We have shown that if the problem were reduced tp only thre
parameters then the(m,) and o(ms) values from simulated
spectra, for example, would not be proportional N6S as
_ 2 — [31] expected.
peaks(ppm ) With this as background, we shall now use some example
to illustrate how we can calculate the associated errors.
Peaks (ppm?) is the average number of random peaks per ) )
ppm. Experimentallyy2,;..(ppm ™) and the gap value may be | "€ Efféct of a Single Noise Peak
determined readily. (Often Eq. [31] can be used quickly, to a We shall choose the noise peak as Lorentzian (see Eqg. [24
good approximation, if appropriate portions of the noise speshereN = 0.25, 0.5, 0.75, and Wwith R(1) set at unity) and
trum are observed, such as in our Fig. 2a.) From these taiow the noise peak to move from 0.5 to 3.5 ppm at 0.01 ppn
values the value of np, follows. For example, wittN = 1, intervals (i.e., np(rangey 3.0 ppm). The phase of the noise is
if X2oise(PPM 1) = 5.85 and the gap= 1 then from Eq. [30], chosen as zero. The results we are determining are independs
npm, = 80.1 ppm 2, if x2.ie(PPM 1) = 5.85 and the gap=  of the noise phase to a very good approximation and this wil
0.625 then from Eq. [30], np, = 205 ppm 2 and, if x>, be discussed later. Note that the same results would be ol
(ppm 1) = 9.36 and the gap- 0.625 then from Eq. [30], np,  tained by allowing the noise peak to randomly move betweet
= 80.1 ppm 2 It is the x2.ise (PPM 1), Or the noises,yce 0.5 and 3.5 ppm. The signal (Lorentzian lineshape) is define
value, and the gap, or the correlation length, which charactés Eq. [2], where the signah, value varies from 5 to 20 with
izes the noise spectrum. Equations [30a], [30b], and [3&ignalm, = 10 ppmni 2, signalm,; = 2 ppm, and signain, =
enable us to calculate, from the noise spectrum, the noBeLater we shall vary the signat, value. The spectral range
standard deviationg, ., from x2.i<c the gap value or the (i.e., ns(range)) was chosen as 1.2 ppm with intervalg f
correlation length, and then thempvalue, thus describing the 0.02 ppm. The peak is analyzed using Eq. [8] and the pea
Lorentzian lineshape, which we have defined as characterizvgues m,;, m,, ms, and m, are determined. The peak,
the correlated noise. values are markedly dependent on the position of the nois
We may determine, from Eq. [30], when the correlated noigeak, as illustrated in Figs. 4a and 4b foy andmg. It can be
approximates the uncorrelated case. The gap may be replasieolwn that for SNR values greater than 5,

gap
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FIG. 4. Them; value as a function of the position of the single noise peak for four cases when the noise peak height is 0.25 (inner curve), 0.5, 0.7
1.0 (outer curve). The Lorentzian signal is at the position 2.0 ppm with a height of 16y @)m,. (b) m; = ms.

m; o« (N) f (fori =1and 4 m; = 2 + N/S * (position— 2)
m = (N/S)f (fori =2 and 3, * exf —6.6 * (position— 2)2]. [32]
This shows thato(m;) for SNR values greater than 5 are

wheref is a function of the position of the noise peak and theroportional toN (wheni = 1 and 4) and proportional to SNR
signalm, value. For example, in Fig. 4b, (wheni = 2 and 3).
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FIG.5. (a) A plot of 100 pairs ofn, values for two different signals with the same noise pattern. The line is givempyt 0), s = (5/20) * (My-10), ayis
(b) A plot of 100 pairs ofm, values for two different signals with the same noise pattern. The line is givempyp0), ,,is = (1/1) * (My-5), ayis

Using theAm values also yields the sameandSdependence signalm, value © andN, it should be noted that the signal,
and is a general property unrestricted by the complexity of thralue does not factor out. Varying the signal value affects the
noise pattern. Figures 5a and 5b provide two examples where fiien of the above function. In Eq. [32], for example, this would
results from 100 multinoise simulated spectra are matched for tamrrespond to changing the number 6.6 for different signal
different signal parameters. For the paakvalue case the slope values. We obtain the following results, which may be obtainec
is 1.0 (theN value is the same) whereas for the pegkcase the by analyzing the specific data or integrating the appropriate func
slope is 0.25 (the ratio of théd/Svalues is 5/20). In contrast to thetions such as Eq. [32]:



PRECISION OF PARAMETERS IN MEASURING RESONANCE SPECTRA 393

Signal—Lorentzian TABLE 1

The Results of Changing the Spectral Range on the Standard
_ Deviations of the Average m; Values Arising from the Interaction
o(m) = 0.42N of a Single Noise Peak within =4 ppm of the Signal (S = 5)

o(my) = 10.1(N/S)

[33] Spectral range (ppm) o(m,) o(m,) o(m,) o(m,)
o(my) = 0.0796N/S)
0.75 0.431 1.41 0.00910 0.401
a(m,) = 0.35N. 12 0.267 1.20 0.00979  0.219
2 0.203 1.14 0.0104 0.133
: : 4 0.175 1.04 0.0105 0.0689
Signal—Gaussian 6 0.170 0998  0.0105 0.0441
o(m;) = 0.335N
a(m,) = 6.70(N/S) mains almost constant. Later we shall show how we may relate

[34] these results to any multipeak noise spectrum.
o(mz) = 0.0708N/S)

o(m,) = 0.270N. The Effect of Three Noise Peaks
Next we replace the single Lorentzian noise peak with three
The peak was analyzed using a Lorentzian lineshape for therentzian noise peaks where the peak positions are

results in Eq. [33] and Gaussian for the results in Eq. [34].

These results, to a very good approximation, are phase inde- peak 1= p,
pendent. For example, from an examination of 20 phase values eak 2= p — R(1)
between 0 and 1 we obtain the following results wiges 5 P P
and a Lorentzian lineshape: peak 3= p + R(1).
a(m,) = 0.442(0.012) [o(m,) = 0.429 The signal height 8,) is 5 and the spectral range is 1.2 ppm.
When np (the noise range) varies from 0.5 to 3.5 ppm and the
o(m,) =2.13(0.11) [o(m,) = 2.02] ight of the three noise peaks varies randomly from O to 1, we
o(ms) = 0.0158(0.0019 [o(ms) = 0.0159 tain the following results from the single signal peak anal-
ysis:

o(m,) = 0.0.383(0.017) [o(m,) = 0.0.357.
Signal-Lorentzian

The standard deviations are given in curved brackets. On the

right, in square brackets, are the values obtained from Eg. [33]. o(my) = 0.416(0.423

In this paper, these differences were relatively insignificant in a(m,) = 1.94(1.99
our exploration of matching the results from simulated multi- _ [36]
noise spectra where the likely errors, due to limitations of the o(mg) = 0.0155(0.0157

finite number of analyses that could be feasibly handled, were o(m,) = 0.345(0.347).
much greater.

If the noise range is varied, we may determine a new setphe signal peak was analyzed using a Lorentzian lineshape for
a(my;) since @(m;))? is inversely proportional to the noisethe results in Eq. [36]. From Eq. [27], thé...value is given
range. For example, the above results were obtained when
noise range was 3 ppm. To obtain the results when the noise

range /\évas 14 ppm we would multiply the above results by N (1 N 5
(3/14)1 ’ . Xﬁoise: T~ )2 + A L a2\ da
We may explore the effect of changing the spectral range Ax/m, 2 o (4 + mpa’)
from 1.2 ppm chosen above. In this case we shall choose the
noise range of 8 ppm. In Table 1 we have provided five 1 (r(12
different spectral range results using a Lorentzian signal of t5 @+ m(a+ b)) dadby . [37]
height (sn;) 5. Note that multiplying the values when the o vo

spectral range is 1.2 by (8f3) yields, to a good approxima-

tion, the appropriate values from Eq. [33]. These results shdwthis casex?,c = 11.8N%. This is in contrast to the?2,ice
that thea(m;) values are smaller when the spectral range V&lue for the single noise peak &.78N? calculated from
increased, with the exception of thm;) value, which re- Eq. [26].
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We may use the following relationship to estimate dtfen;) TABLE 2
values of a three peak noise spectrum from the single noi§®mparison of the o Values in Varying the Gap When S = 10

peak analysis:

Gap a(m,) o(my)
Spectrum (ppm)  o(my) (ppm~?) (ppm) a(m,)

2 1/2
_ np(rangék * Xnoise
o(m)i = o(M)e* | Trange, « 8.78 [38] calculated 15 0.495 117 0.00919  0.406
| . .
Simulated 15 0.501 121 0.00913 0.434
Simulated () 1.5 0.482 1.19 0.00825  0.416

The np(range) for the three noise peaks is greater than 3 since

the central noise peak has a range of 3 ppm and the total rafg&u'ted 1.0 0.607 143 0.0113 0.498
) . R ; X ulated 1.0 0.614 1.49 0.0109 0.536
is 5. The effective range, in this case, is approximately 4.13. |aied *) 10 0.542 142 0.00935 0483
ppm. Hence we may obtain to a good approximationst{i®;)  simulated (**y 1.0 0.551 1.45 0.00916  0.495
values f'or the three noise peaks mteract.lng with _the signal (%qd.ICulated 0.625 0.767 181 0.0142 0.630
[38]) using thea(m;) value results for a single noise peak (Edgjated 0625 0778 1.90 0.0142 0.692
[33]). We obtain the values given in brackets in Eq. [36].  simulated (*) 0.625 0.646 1.89 0.0107 0.627

- Calculated 05 0.858 2.02 0.0159 0.704
The Erectofn NolSe Peaks Simulated 0.5 0.891 2.14 0.0158 0.781

We may extend these results for a single noise peak to apifpulated (%) 0.5 0.684 1.86 0.0117 0.637

pattern of noise peaks us!ng the CaICUIaﬁqise value (p.er Note. The calculated values were determined from the single noise pea
ppm). From Eq. [27], using 12 terms the,s. value is analysis given by Eq. [33] using Eqgs. [39] and [40]. The simulated noise
10.089\? (per ppm) for the complex noise pattern of a largepectra were obtained using 6000 multinoise spectra results where the noi
number of noise peaks where the gap is chosen as unity. Phase was random and held constant at zero indicated by (*). In one case t
noise peaks will interact with the signal as some function of tgase was held constant at 0.25, indicated by (**).
distance from the signal as shown for the single noise peak case
in Fig. 4. Hence to use thgpqs value (per ppm) for a speed of the computer used. In the final stages of this paper v
multipeak noise spectrum we need to replgfgscby (spectral have been able to considerably increase the number of simi
range)# xaoise (PPM “)/np(range)in Eq. [38], where (spectral |ations within realistic times of less than a day, which has
range)/np(range)may be expressed as a factor. Therefore, Weabled the inclusion of the exploration of a wider range of
may rewrite Eq. [38], in order to compare the multi-peak noisgxamples. For instance we have used up to 6000 simulation
with the single noise peak spectrum, as We shall begin by comparing the(m,) values from the
single noise peak analysis (Eq. [33]) with the simulated multi-
np(range, * factor= x2,.dppm *)\*? noise peak spectra where the noise spectrum has a randc
o(my) = o(m) < 8.78 ) phase and a zero phase for a range of gap values. The spec
[39] range was 1.2 ppm with a Lorentzian signal wherg(s) =
10 and sn, = 10 ppm 2 The noise spectrum was chosen to

In the case when the phase of the noise is random, Eq. [$9] =2.5 ppm about the signal peak. The results are given i

simplifies to the expression Table 2.
The details presented in Table 2 show that we have ver
np(rangg, = 2\ ' good agreement between the calculated and simulated resul
a(my), = a(my), * (3‘gap) [40] especially when the noise phase is random. When the phase

held constant thes(m,;) and o(m,) values appear to be

. L smaller, especially at smaller gap values.

e S e eion e o aplie may s expoe the fecieness of our model

is given as ' ' pr]edicting the way ther(m;) values vary with spectral range
changes. The details are given in Table 3. Here again the mod

is very successful in predicting the outcomes especially for th

random noise case. As before, if the phase is held constant tl

o(m;) anda(m,) values appear to be smaller.

Tables 2 and 3 show that Egs. [39] and [40] may be use
We shall explore the results from Eqgs. [39] and [40] byery effectively to predict the-(m,) values for multinoise peak
simulating multi-noise spectra and comparing th@n;) val- spectra from the single noise peak data. Agreement is be
ues. The major problem, however, in accomplishing this goahighen the noise phase is random but for more approximat
that we must carry out a very large number of simulations tesults we must show that it is applicable, in many cases, to ar
gain reliable results and this will depend very much on thghase. This is important when the simulation process is limite

2 =1
Xnoise( ppm )random phase
2 =1 .
Xnoise( ppm )specific phase

factor= [41]
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TABLE 3 o(my) =0.474x N )
Comparison of the o Values in Varying
the Spectral Range When S = 10 o(m,) = 9.48 %
Range o(mg) o(ms) N[ [43]
Spectrum (ppm) ~ a(my)  (ppm™) (ppm)  o(my) o(my) = 0.100% &
Calculated 0.75 0.995 1.63 0.0105 0.926
Simulated 0.75 1.02 1.88 0.0102 0.985 o(m,) = 0.382% N |
Simulated (¥) 0.75 0.939 1.78 0.00919  0.910
Calculated 12 0.617 1.39 0.0113 0506  To complete the single peak analysis we shall examine the
2:23:2:23 " 1122 g'gg 11':2 8'838;’5 8'222 effect of changing the signah,-value (sn,) on the pealn, o
’ ' ' ' ' values,o(m;). For the case when the signal is Lorentzian and
Calculated 2.0 0.469 1.32 0.0120 0.308 gm, is varied from 5 to 20 we find that far(m,) we have a
2:23:2:23 " 22'8 8';‘553 llg’g 8'833257 82?; linear relationship. For the othervalues the relationship is of
' ' ' ' 7 the forma + b/sm, + ¢ * sm,. When the signal height ifs,)
Calculated 4.0 0.404 1.20 0.0121 0.159 js 10 (S = 10) and the noise is unityN( = 1) the results are
Simulated 4.0 0.385 1.23 0.0115 0.184
Simulated (¥) 4.0 0.301 1.02 0.00934  0.136
o(m;) = 0.0760+ 2.84/3n, + 0.0068* sm,

Calculated 6.0 0.393 1.15 0.0121 0.102
Simulated 6.0 0.376 1.20 0.0119 0133  g(m,) = 0.424+ 0.0601% sm,
Simulated (¥) 6.0 0.297 0.950 0.00944  0.0992 [44]

o(ms) = 0.00690+ 0.0203/sn, — 0.00011* sm,
o(m,) = —0.048+ 3.44/3n, + 0.0054* sm,.

Note. The calculated values were determined from the single noise peak
analysis given in Table 1 using Egs. [39] and [40]. The simulated noise spectra

results were obtained using multi-noise spectra where the noise phase was .
random and held constant at zero indicated by (*). The results for the specif’e Effect of Many Noise Peaks

.range 0.75,1.2, qnd 2 ppm involved 6000 simulations, the 4 ppm spectral ranggare have estimated above the expemmes for the four

involved 4000 simulations, and the 6 ppm spectral range involved 2500 . . . .

simulations. parameters of a Lorentzian or a Gaussian signal from a single
noise peak. To examine this further, we analyzed 1500 simu-
lated spectra when the noise pattern is randomly generated with
a gap of unity for a specific signal level. In this example the

L ) . tElhase of the noise is set at zero.

to smaller numbers and then it is es'sentlal to minimize t eBy generating 1500 spectra for specificandS values, we

number of random variables whgn .trylng to compare the %Y{zve shown that for the spectral range of 1.2 ppm and a SNR

comes from the single and multinoise peak cases. between 2 and 20.

As a key outcome of our above analysis we may use EQs._. . . . L

[39] and [40] to calculate from Egs. [33] and [34] the expected Fitting the Lorentzian signal to a Lorentzian lineshape.

o(m;) values when the noise is characterizedBy..(ppm %)

= 5.85 (random noisey 10.05 (constant phase) and the gap

1 ppm. (The factor in this case is 5.85/10.650.582.) The

results are obtained, in this case, by multiplying\#@ to give

N® \
o(m,) = 0.538N + 34(5“)

N
the o(m;) values a(my) = 15'0<S)
\ [45]
o(my) = 0.607= N ) a(my) = o_oggg{s)
(my) =14.3 N N®
m,) = 14.3% <
7 S o(m,) = 0.490N + 4o<s4> :
\ [42] )
o(my) = 0.113% _ _
S The expressions far(m,) ando(m;) are applicable for SNR
o(m,) = 0.498% N. | values as small as 2 whereas the expressionsrfor;) and

o(m,) should not be used below SNR 4. Increasing the

noise N-value and the signab-value by the same factor in-
Similar results apply, using the same multiplier, when thereasesr(m,) ando(m,) by the same factor but leavegm,)
signal is Gaussian: and o(mg) unaltered.
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Fitting the Gaussian signal to a Gaussian lineshapl.we values as outlined above we are then in a position to estimate, to
choose the signal to be a Gaussian lineshape and fit the simulategbod approximation, the expectet) values for any signal
spectrum also to a Gaussian peak we obtain the relationshipsn a spectrum just from that spectrum. This may be done by

first examining the spectra under investigation to estimate
N4 \ Xooise(PPM ) and the gap (the maximum separation of the noise
Ss) peaks or from the average number of noise peaks per ppm) and the
N value (the maximum noise height). An estimate of the signal
_ N height then yields the SNR. By using the appropriate equations the
o(mg) = 10'01<S> o(m) values may be predicted.
[46] To conclude this section we examine the effect of changing

o(my) = 0.416N + 6.9(

a(ms) = 0_0847(N) the signalm, value on theo(m,) and o(m;) values. The
S change is reflected in the results given in Eq. [44] from the
N4 single noise peak analysis. Using a multipeak noise spectrum
a(m,) = 0.391N + 7-6< 33) of zero phase yields
/

As before, the expressions fa{m,) ando(m;) are applicable o(my) = (10.39+ 0.508n,)(N/S)

for SNR values as small as 2 whereas the expressions for g(m;) = (0.0978+ 0.160/$n, — 0.001638,)(N/S).

o(m;) ando(m,) should not be used below SNR 4. These

results agree well with our predicted values when the SNR is

greater than 5 (see Eqgs. [42] and [43]). COMPARISON OF THE SIGMAS AND THE RHOS
To conclude the comparison with simulated spectra we have

been successful in examining the results of 1.2 ppm spectral he next step toward understanding the noise-signal inter-

where a Lorentzian shaped signal is embedded in a randa#iion is to explore the variance of the sigmas from spectrum

noise with random phase whey@,<.(ppm 1) = 5.85 and the o spectrum with randomly produced simulated noise spectra.

gap = 1.0. For the signal withra, = 10 ppm 2 and sn,(S) The analysis of each spectrum yields different values and our

= 5, 7.5, 10, 15, and 20, thiellowing o(m;) values were Sigma equations above suggest that in terms of the pegk,

[48]

determined from 6000 simulations: m,, and theo value, we have the relationships
N3 \ o, =slopg * o )
o(my) = 0.596N + 1.58(2>
S m, m,
N P slope * -
2
o(my) = 15.1( s) [49]
(o
N [47] o3 = slopg * e
1
o(mg) = 0.111()
S o, = slopg * o, )
3
o(m,) = 0.51(N + 2.41( 83) . where, in addition, if we use our approximate equations, the
) slopes may be written as

(The R value from the analysis of the five data sets used to [1]
derive Eq. [47] was greater than 0.99 and in the two cases for slopg = {(\,’EAX) 1/2 g} )
the o(m,) ando(m;) values it was greater than 0.999 with an X

error of less than 1% in the constants.) We note the very similar X

results for the case when the noise phase was set at zero, Eq. slope = {(WAX)”Z[Z]}

[42]. In Eq. [42] thea(m,) anda(m,) values are lower. Also, Ve g [50]
with the greater precision, we observe that th@m,) and Ax \*?g[3]

a(m,) values are slightly dependent on tSratio whenN/S slope = { ( \’,ﬁ) x}

is less than 0.2. They are markedly dependeniNé® when

N/Sis grea_lter than 0.2. _ slopg = {(\/@Ax)”z 9[4]}
The relationship between tlag€m) values from the single peak X . )

noise analysis and the multipeak noise results greatly simplifies

the effort required to estimate the errors due to random peak ndfge may test these relationships by analyzing 100 simulated

in complex NMR spectra. Once we have determineddtm) spectra with one signal peak and a series of random noise
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FIG. 6. Plots of theoy value as a function involving as expressed in Eq. [49] from the analysis of 100 spectra with one signal peak and a series of ran
noise peaks.

peaks. The spectral range was chosen as 1.2 ppm\and Next we compare the values ¢;) from each peak analysis
0.02ppm. The Lorentzian shaped signal was definedgs=s and them, values and theirr values @(m;)). The results
10, sn, = 10 ppm 2, sm; = 5.0 ppm, and®, = 0. Axwas obtained from the same set of 1500 spectra are given in Table
chosen as 0.02 ppm to closely match the experimental specrand 5. The important result is that thém;) values are much
The four slopes determined by a line of best fit through ttgreater than the mean values. The ratios are given in Table

origin, with the approximate solutions in brackets, are 5. This confirmation that the; values should not be used to
estimate the errors in the overafi values.
slopg = 0.731(0.740 We may test the approximate solutions for theand p

B values for the single peak analysis. We chose a Lorentzia
slopg = 0.411(0.396 [51]signal where m;, = 5 and a multi-peak noise spectrum, and a
slopg = 0.0917(0.0916 series of results is presented in Tables 6 and 7. The set «
B results in the brackets and braces is calculated from Egs. [2:

slopg = 0.809(0.823. and [22], respectively. The additional set for the 10 ppm range

i i is the results given by Eq. [23a]. The multi-peak noise spec
Figure 6 shows a typical result. For the 100 spectra, the p was the same for each spectrum analyzed. Similar resul
m, value varies between 8.99 and 11.12, the peaketween are obtained for the Gaussian signal case

6.97 and 13.61 pprif, the peakm, between 4.97 and 5.03 The formulas derived for calculating tleeand p values for

ppm, and the pean, between—0.80 and 1.49. The noise, a single peak analysis given by Egs. [21] and [22] are appli
varies between 0.016 and 0.32. The peak mean valueSiare;,p e 1o a spectral range at least as small as 1.2 ppm. They ¢
= 10.088,m, = 10.050 ppm<, my = 5.0005ppm,m, =
0.299, ands = 0.133. The mean values of tle-values are TABLE 4
o, = 0.0969,0, = 0.328 ppm?, o5 = 0.00122 ppm, and-

:1 0.107. We f)bserved fhpat onl; 20% of th%m\)/alues |i4e A SL_m_wmary qf 1500 _Peak Sigma Result_s from 1500 S_pect_ra
within the range of 5+ 2.5 o of the true signai, value. If goggﬂf;n\g/vﬁeigtﬁl '\‘;‘g;[:e ihzseSI??)d a Simulated Multi-noise
we decreaseAx, the o, values decrease by the ratia P

V(Ax/0.02) (see Eg. [21]). For example, whekx = 0.002 o 5
the o; values ares; = 0.0302,0, = 0.101 ppm?, o3 = o, (ppm2) (ppm) o,

0.000368 ppm, and, = 0.0335. In this case, less than 10% of
pm; values lie within 5= 2.5 o5, A similar effect occurs for “Rﬂange
the otherm; values. ean

1.57 4.69 0.0107 1.63
0.106 0.634 0.00237 0.116
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TABLE 5 TABLE 6
A Summary of 1500 Peak m; Results from 1500 Spectra (1.2 A Comparison of the o Values Determined from the Analysis
ppm) Comprising a Signal with S = 5 and a Simulated Multi-noise of a Single Spectrum
Spectrum Where the Noise Phase Is 0
Range o, [
m, m, (Ppm) oy (ppm~?) (ppm) o4
m (Ppm?) (ppm) m,
1.2 0.1100 0.6007 0.002604 0.1222
Range 5.90 19.6 0.170 5.97 (0.1146) (0.6159) (0.002609) (0.1273)
?(?ﬁ")' 0551757(‘9 12%1037 02.601%%5 0?'5232()2 2 0.07088 0.6195 0.004075 0.06347
o(m)/o, 54 46 8.0 46 (0.07145) (0.6242) (0.004076) (0.06454)
4 0.05763 0.3767 0.004122 0.02653
(0.05765) (0.3774) (0.004122) (0.02668)
a considerable improvement over the formulas suggested By 0.06943 0.3880 0.004991 0.01426
(0.06943) (0.3881) (0.004991) (0.01428)

Posener4) and Cheret al. (5), which are only applicable for
very large spectral ranges and are not applicablenteivo {0.06938} {0.3460} {0.004991} {o}
NMR analyses where we need to analyze spectra close to ’E\:}t ™ s in brackets and b determined from th
particular peak of interest. Thp values are of particular oo "¢ FeSUTS IN BTACKELs and braces were derermined from the appro>
! . . imate solutions given by Egs. [21] and [23a], respectively.

interest; for small spectral ranggs, is large and negative. As

the spectral range increases it becomes large and positive,

tending toward a value of 192. In the Gaussian case it . . .
behaves in the same way but tends to a value d¥3/@n the X° = 0, because the height of the peak is the sum of the sign:

other handp,, is large and negative for small spectral range%nd the noise. AIt.hough we f_lave a perfect fit the peak height i
and approaches zero for large spectral ranggsis large and .not. the §|gnal he|ght. For Fhls reason we must be very careft
positive for small spectral ranges and approaches zero for Iaf@énﬂ?mng peak .|nformat|on to the signal parameters wher
spectral ranges. In the Gaussian casgandp,, behave in the handling such noise.

same way. We find the same general pattern forpthalues In addition, ghexz value and, O.f course, thefoisvalue (but
for them; values. A typical set of results is shown in Table got the meany,qisc value) vary significantly from spectrum to
for three spectral ranges spectrum. We may explore the smallest likely value from a
Finally, we shall conclude this section by examining the series of spectra by considering how ;s value will vary
values used to determing, o, o, anda in Eq. [9]. We may for a specific arrangement of noise peaks. First, the minimur
y y y 4 . . . . .
estimate the meam value from the meag? value provided we Xnoise Value W,'” occur when the noise peaks are at the maxi-
know the appropriatg?/xZ...ratio since we can calculate theMum separation, ie., the gap value. If we consider all the peak
X2oee Value from Eq. [27]. They? value is approximately to be the same height, and equally spaced about the center

independent of the noise phase chosen. e’ <. ratio does of the spectrum then
vary significantly with the spectral range and is independent of

the signal height. From our simulated spectra when the maxi- TABLE 7
mum separation of the noise peaks is 1 ppm (gapppm) we A Comparison of the p Values Determined from the Analysis
have the following results, where we have chosen the noise of a Single Spectrum
phase as zero:
Range
. (ppm) p p p p P p
1.2 ppm spectral range,k = x% x2yseratio= 0.10. = = - z = -
. _ 1.2 -0.797  0.013 -0.943 -0.010 0.936 —0.013
4.0 ppm spectral range,k = x“/xnoseratio= 0.27. (~0.808) ©)  €0.947) ©) (0.938) ©)
10.0 ppmspectral range, k = x*/x5oscatio= 0.34. 2 -0.162  0.002 -0579 -0.002 0.833 —0.002
(-0.175)  (0)  (0.588) (0) (0.835) )
Hence in our simulated spectra for the 1.2 ppm spectral range 0.388 0 —~0.186 0 0.675 0
the meano value is given bys = {kyx2,d(Q — n)}¥2 = (0.385)  (0)  (0.188) (0) (0.676) 0)
0.145 absorption units, sinc® = 61 (Ax = 0.02) and ,, 0615 0 0.035 0 0451 0
n=4. (0.614)  (0)  (0.035) (0) (0.452) )

The x? value reflects the degree of the noise “seen” by the 0.707 0 . 0 0 0
analysis as part of the peak. This may be illustrated by a very fo.ron (o for 0 o o

simple example. If we had a single noise peak with the sameygte The results in brackets and braces were determined from the appros
width and position as the signal then the analysis would yieleate solutions given by Egs. [22] and [23b], respectively.




PRECISION OF PARAMETERS IN MEASURING RESONANCE SPECTRA

TABLE 8
The p-Values for the m; Values Derived from 4500 (1.2 ppm),
1500 (4.0 ppm), and 500 (10.0 ppm) Simulated Spectra with
Multinoise Peaks Where the Signal Was Chosen as Lorentzian

399

TABLE 10
Estimation of the x* Value below Which Only
about 1 in 1500 x? Values Occur

Observed minimum

Xﬁoise X2

Spectral range  Number of

with sm; = 5, sm, = 10 ppm~2, sm, = 2 ppm, and sm, = 0

(ppm) effective peaks Value Value x? value
Range
(ppm) P12 P13 P14 P23 P24 P34 12 2 0.0120  0.0012 0.0015
4 6 3.53 0.95 0.956
1.2 —049 -0.0287 -0.871 0.0353 0.771  0.0346 10 12 29.8 101 130
4.0 0.253 —0.010 -0.118 —0.036 0.623 0.011
10 0.395 —0.013 —-0.088 —0.093 0.462 0.029 3 The observed minimung? value when the spectral range was 10 ppm was

from only 500 simulated spectra.

. 2
F2 <4+pm>] (52

n=1

h22r 1

2 _ -
Xnoise = Ax\npm, [4 The effect of the noise component as reflected above is i
marked contrast to the case when the noise contribution of eac

data point has a normal distribution with a zero mean and

Equation [52] is rather interesting. Whan= 1 they?,..value standard deviation equal @ and the noise contribution of

(per ppm) given by Eq. [52] is a good approximation of th&uccessive data points is uncorrelated. It has been shown tf

results from Eq. [27]. (For the case with a random noise pha8h such a noise background thisvalue dictates a lower

Eq. [52] simplifies to Eq. [26], whertl = 1.) (As before, to bound, known as the CramdRao lower boundl?), and is the

obtain the y2,.svalue (per ppm) when the gap is varied"nimum po_SS|bIe value for the value in Eq. [9].

npm, — npm, * (gapf.) Table 9 illustrates the similarity of Such anoise background would be less than 10% of our tot:

the meany?,... value (per ppm) from Eq. [27] and thé,, noise component observed in dorvivo spectra. Thus, if such
noise : oise - . .

value (per ppm) given by Eq. [52] when the gap and the noi8eN0ise background were superimposed upon our simulate

peak npn, value are varied. In Table 9 the summation in E spectra the minimunor value would be approximately 0.025.

[52] is over 1000 terms whereas in Eq. [27] we have used orf[jOm our above analysis we would only observe the Cra

the first 12 terms. mé&—Rao lower bound when the spectral range is rather smal
From Eg. [52] we may estimate thé.,.. value for varying and in this work it has no real significance.

values of then value which may be the lowest likely value. For Finally, in this section we compare our results for a corre-

example, if we compare some 1500 simulated spectra and widjgd noise example with the case when the noise is uncorr
to estimate ther-value below which only about 1 in 1509 lated. We shall focus on the example when the signal may b
upeak described by a Lorentzian function. For the correlated noist

values occurs we may do this by choosing= (ﬁ) ) g 1 >
where the peak value is the effective number of peaks corf@se, With random phase, OMfise (PPM™*) = 5.8\ (or
= 0.31N) and the gap= 1.0 ppm @pise = { X“AX/

sponding to the particular spectral range. The results are ill(fswise v e — X
trated for three spectral range examples in Table 10. The thksgectral rangé}”. The 7 oisevalue standard deviation is about

observed minimuny? values correspond to thevalues 0.005, 5.79N?, Wh2|ch Is very large. For azsp_ectr_al range of 1.2 ppm
0.0697, and 0.1620. As the spectral range increases the rajiigeMeanx” value is aboutl.40N", yielding a o value of

of the yZ,ssvalue decreases and the minimum value will tenf- 15 ™. Using Eq. [21] we may estimate the meapvalues

to the meanyZ,.cvalue. Similar results will apply for any @S approximately

specific or random noise phase.

o, = 0116\1 )
TABLE 9 N
o,=3.95<
A Comparison of the x2,... Value (per ppm~1) from Egs. [27] S
and [52] for Three Different Noise Peak m, Values and Gap N (53]
Values o3 = 0.0144§
npm, = 80 ppm 2 npm, = 10 ppm 2  npm, = 200 ppnm 2 _
Gap o,=0.12N.
(ppm) Eq.[27] Egqg.[52] Eq.[27] Eq.[52] Eg.[27] Eq.[52] ) ] ]
From 6000 simulated spectra we find the following results
1.375 6.38 6.93 31.6 29.2 3.49 4.18 when sn; = 10 andN = 1, i.e., the noise range is from1
1000 10051048 - S4.7 - 512 527 591 45 1:32 = 1.40,0, = 0.101 (0.116)g, = 0.340 ppm * (0.395
0.625  20.86 19.52 125.3 126.7 10.2 10.3

ppm ?), o5 = 0.00126 ppm (0.144 ppm) and, = 0.112
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FIG. 7. Plots of them values from the analysis of the single peak from 4500 simulated spectra where the signal was expressed by Eqni2l=whh s
sm, = 10 ppm 2, sn; = 2.0 ppm, andm, = 0. The spectral range was 1.2 ppm. f&) versusm, and (b)m, versusms.

(0.129). The results in brackets are from Eg. [53] and consiﬂ}(%) = 20.3N?, 0,,5isc = 0.58N. The standard deviation

ering the approximations involved show remarkable agreemaithe x2,,.cvalue may be expressed as {(spectral range)+

between the calculated and mean sigma observed values. 1}°-5(2/(3V/5)), which is 2.33 when the spectral range is 1.2
Next we turn to the case when the noise is uncorrelated.afidAx = 0.02. But inthis case, we would expegf = x2oise

the noise height randomly varies betweemN andN with a From 6000 simulations we find that, when the spectral range i

uniform distribution theny?,<e = {(spectral rangedx + 1.2 ppm, x> = 19.0N? instead of20.33N?. (This small
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reduction is in marked contrast to the very large difference thatlues. This is illustrated by plotting a couple of differemt
occurs in the correlated case.) Using thyfs value we may values obtained from a large number of analyses. Figures 7
estimate the meas; values, and hence thgm;) values, from and 7b illustrate the spread of time values obtained from
Eq. [21]. (Theo value is given by Eq. [12].) The results are the analysis of 4500 simulated spectra for the case when tt
spectral range is 1.2 ppm and the Lorentzian signal has th
o, = o(my) = 0.42MN \ parametersra; = 5, sn, = 10 ppm 2, sm; = 2 ppm, and

sm, = 0. Thesem plots form very characteristic patterns
&, = o(my) = 14.6N and highlight the spread and the frequency of the results
S The range of results given in Table 5 is reflected in these
N [54]plots.
o3 = o(mg) = 0.0529§ If we use a single noise peak of a specific heidgit,and
determine the effect of this noise peak on the measuremel
o, = o(m,) = 0.475N. ) of the peak parameters we obtain a set of contours for th

two m-plots, as shown in Figs. 7a and 7b. These are show

(As the spectral range increases the numbers in Eq. [54] tendtoFigs. 8a and 8b. The correspondimg-plots are very

the following: 0.427— 0.164, 14.6— 4.63, 0.0529- 0.0518, similar and mirror the complex patterns. The majority of the
and 0.475— 0.) data points are within the contour bff = 1.5 and almost all

From the 6000 simulations whems = 10 we findg, = are within the contour oN = 2.0. Using the valueN = 1.5
o(my) = 0.418 (0.427),0, = o(m,) = 1.42 ppnr2 (1.4¢ obtain
ppm 2), o5 = a(ms) = 0.00526 ppn(0.00529 ppm), and,

= o(m,) = 0.464 (0.475). Theesults in brackets are from m=5*1.21

Eq. [54]. We find very good agreement. If the random height

distribution of the uncorrelated noise were a normal distri- m, =10=* 6.35

bution, with a standard deviation of then the numbers in 3 [55]
-~ : ) m; = 2 + 0.0528

Eq. [54] would be multiplied by\V/3 to give the equivalent

meano; values and hence the(m;) values. For a normal m, =0+ 1.24.

distribution with a zero mean and = 0.50, about 95% of

the noise hglght lies betweeﬁl and 1. In this case'V'3 = These results are very close m *+ 20(m;). Hence this
0.866. An important aspect is that Eq. [47] cannot be 0sim le approach may readily yield the expected errors in the
tained from Eq. [54], or Eq. [53], using a single multiplyin pie app Y Yy P

factor. e.a.. 15.1/14.6 1.03. whereas 0.111/0.05292.14 gmi-values describing a particular signal obtained from the
reg, 1o S ' : " analysis of a peak, a composite of random noise and th

This section has shown that we have been able to derive o TR : -
signal. In addition, it reinforces our approach in predicting

equations to successfully predict the standard deviations 89 . . :
. the appropriatec(m;) values from the single noise peak
the peak parameters. These equations are expressed as func-

tions of the maximum (or minimum) noise heigiN), where analysis.

the noise varies randomly from-N to N, and the signal

height (S), where the noise may be described as uncorrelatedCHARACTERIZATION OF THE PEAK LINESHAPE
or correlated. The differences between the eight sigmas for

the correlated and noncorrelated noise patterns are veryVe next examined the analysis of either a Lorentzian or :
significant. Gaussian lineshape and then used the two results to ga

information about the peak’s lineshape. With this in mind, we
analyzed a Gaussian and a Lorentzian peak superimposed
RELATIONSHIP BETWEEN THE MULTI-PEAK AND the usual random Lorentzian noise spectrum and fitted th
SINGLE PEAK NOISE ANALYSES result to a Lorentzian and a Gaussian peak. The signal heigl
(sm,) range was from 2 to 20 with a 1.2 ppm spectral range
In an earlier section we showed how to derive the staRor them, values we obtained, using a Lorentzian sigiH
dard deviation of each of the foum values arising from a 0.9996),
noise spectrum comprising multinoise peaks generated ran-
domly from a ;ingle _noise spectrum and a three noise m,-Lorentzian fit= 1.306 * m,-Gaussian fit. [56]
spectrum. In this section we shall explore the errors ex-
pected in the foum values in a different way. Using a large . . .
series of simulated spectra with a single signal superith/SiNg @ Gaussian signaR(=
posed on a multinoise peak spectrum (random peak height
and position) we may readily determine the range ofrthe m,-Lorentzian fit= 1.406 * m,-Gaussian fit. [57]

0.9995), weobtained
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Although the errors in then, values are greater, we find a The approximater values are given in brackets. The sepa-
similar relationship. For the case when the signal is Lorentziaation between the- andB-ATP P peaks &.p) is used often
(R = 0.978), for specific information inn vivo NMR and in this spectrum
we have the resuls,; = 8.517 ppm. Ther value is given by
m,-Lorentzian fit= —4.1+ 0.98 * m,-Gaussian fit, [58] {(73(a-ATP))* + {(o3(B-ATP))’}°*, which is 0.00735 ppm.
This gives us the error in the peak separation. To determine tt
and for the Gaussian cask & 0.968), error in the signal separation we need to determinesifm;)
values for both signals. Using time, values as an approximate
measure of the signal height (tlg&evalue) and estimating the
noise level relative to the signal, we may estimate the SNR fo

) ) both cases as 8.5 and 12.9 for the and B-ATP peaks,
These results are clearly different and, where appropriate, may

- X ectively. (We note that this spectrum is one of the bette
be used to determine the best peak shape from the analys'§ﬁ£ztra, where the SNR is relatively large for this type of work.
the experimental data.

The noise level was determined from each spectrum by est
mating the noise height range, which corresponded to Me 2
ANALYZING IN VIVO 3P MRS SPECTRA value.) From Eq. [47], we then determine an approximate
o(mg) value for thea-ATP, o(m3), = 0.0086 (0.110/12.9).
We conclude this paper by examining six setsasfand In the B-ATP case we need to take .into account the smmgll
B-ATP 3P MRS measurements obtained from rat biaivivo, vaue- From Eq. [48], we would obtain(ms); = 0.0294 ppm
where each set is a series of nine measurementsaoveh (0-250/8.5). Equation [48], however, has not been tested fc
period following moderate fluid percussion-induced brain isUch smalm, values. Hence to check the result of 0.0294 ppm
jury. Each set consists of an average of acquisitions in 30 n§ may derive the appropriate equation by carrying out the
blocks obtained owea 4 hperiod after the injury. The 53'p  interaction of the single noise peak with a signal witg =
MRS spectra were analyzed with the and B-ATP 3P peaks 1.04 ppm 2, as described earlier, obtaining equations similar
at the center of a small spectral range for a Lorentzian and%EQ. [33]. For thar(m;) value we obtainr(ms) = 0.330(N/
Gaussian lineshape. A typical analysis—hATP 3'P peakin S)- In this caser(ms), = 0.0388 ppm(0.330/8.5). We shall
Fig. 1—yields, for a Lorentzian lineshape), = 8.62 x Use this result. Theo(m;) value for 5,5 is given by
1075, o, = 2.22 X 10°® (2.45 X 10 9, m, = 4.22 {(0(mg),)? + {(a(mg))?° which is 0.0397 ppm. Hence
ppm 2, o, = 0.246 ppm? (0.265 ppm?), m; = —16.164 Wwe estimate thad,; = 8.517=+ 0.079 ppm {20). Hence we
ppm, o3 = 0.00178 ppm (0.00180 ppmn, = —9.65 x would expect the; value to lie between approximately 8.44
10 ° ando, = 2.37 X 10 ° (2.61 X 10 °). The values in and 8.60 ppm.
brackets are calculated from Eq. [21], where the spectral rangd his 6,4 result is from the first of a series of nine observa-
is 1.206 ppm and = 1.10x 10 °. The good agreement is intions following injury. The nine values (in ppm) are 8.517 (0),
marked contrast to the results of Chehal. (5). 8.518 (0.5), 8.531 (1.0), 8.548 (1.5), 8.565 (2.0), 8.525 (2.5)
We may extend our peak analysis to teeand g-ATP 3P 8.565 (3.0), 8.541 (3.5), and 8.594 ppm (4.0), where the timi
peaks in a single spectrum where we select two portions eagthours after injury is given in brackets. It may be tempting to
about 1.2 ppm, one with the-ATP 3'P peak near the middle show a possible small time dependence from a regressic
and the other with th@-ATP 3'P peak close to the middle ofanalysis. However, the meax); of the nine values yields,
its spectral range. A typical set of results, fitting a Lorentziag 8.545 ppm with a standard deviation of 0.0258 ppm. Our
lineshape to the two peaks, is given below. estimate of the expected errors due to noise in the spectru
gives the larger value of 0.0397 ppm and hence we can rule ol

m,-Lorentzian fit= —2.5 + 0.83 * m,-Gaussian fit. [59]

_ 3 _ 31 . i
-ATP 7P peaks P-ATP 7P peaks any time dependence over the 4-h period. All the ning

m, = 6.76 X 10°° m, = 10.3x 10°° values lie within the expected range. (Note that thealue
a(my) = 1.94 % 10°° a(m;) = 2.92X 10°° from the particular spectrum is 0.00735 ppm, which is muct

(2.22 x 107°) , (3.92 10’5)2 smaller than the experimental errerims),, g, of 0.0258 ppm
m, = 8.126 ppm m, = 1.04 ppm ;
o) = 0.734 (0.807) ppr? o(m,) = 0.400 (0.521) ppr? and even smaller thap thg estimat&g; error, o(mg),g, Of
ms = —7.534 ppm m, = —16.051 ppm 0.0308 ppm d_ue to noise in the spectrur_n.) _
o(my) = 0.00347 (0.00340) ppm o(my) = 0.00648 (0.00600) ppm  The analysis of all thg8-ATP peaks yields the results in
m, = 1.91x 10°* m, = —2.38 x 10°° Tables 11 and 12, assuming Lorentzian and Gaussian line

— —6 — —5 . -

fr((rf214)4;x2-115172<) 10 U(%)ggf-fgfg) 10 shapes, respectively. We note that thealues from the single
o= 205% 10-¢ o= 208X 10-° analysis given abqve are much smaller than thos_e for th
Spectral range= 1.179 ppm Spectral range 1.206 ppm averagem; values given in Table 11. For the Lorentzian case

Number of data points= 45 Number of data points 46 them, value is much less than 10 and hence we shall use E
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FIG. 8. Two m plots for the result of the interaction of a single noise peak on the signal with=s 5, am, = 10 ppm 2, sm; = 2 ppm and 81, = 0.
The height of the noise peak has been choseN as0.5, 1.0, 1.5, an@.0. The shortest contour is whéh= 0.5 and the longest contour whéh= 2.0.
(a) m, versusm, and (b)m, versusms.

[48] to take this into account in determining tlag€m,) and 0.065. This is larger than the experimentally determined valu
o(mg) values. given in Table 11. Likewise, we estimate, using the mean

We note from our example that(ms), and o(m;), are value of 3.5 ppm? and a SNR of 3, thatr(m,) = 4.05.
similar and we may approximately write(ms) .5, theo value For the Gaussian case we estimate an aveiggevalue
for the 6,5 value, as;(m3),3\@. Using a SNR value of 3 and of about 0.040 ppm and a&(m,) value of approximately
the meanm, value we find that ther value would be about 3.34 ppm 2.
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We may even simplify such an analysis of results to give TABLE 12
a rough estimate of the errors in thg, value. This is easy The Results of Fitting the *'P a-ATP Peak
to carry out and is a quick method to give an insight into the to a Gaussian Lineshape

magnitude of the likely errors. Here we shall consider only

the Lorentzian case. Let us assume that mevalue for Value M Mo Dap Ma

the B-ATP peak may be about 3.5 ppTﬁ Assuming that the winimum 2.57e-05 223 8.473 1.13-05
a- and B-ATP 3P peaks have the same SNR, then theaximum 9.00e-05 22.73 8.717 1.02-04
a(mz),z may be expressed 8s163(\/S) since for thex-ATPMean 5.2%-05 6.94 8.580 6.02-05
3P peako(ms) = 0.111N/S) (from Eq. [47]) and for th&(™) 1.51e-05 337 005246 2.2%05

B-ATP 3P peako(m;) = 0.120(N/S) (from a single noisarecra > > >4 >4

peak analysis). If some of the spectra have SNR3, the

smallest value we observed, we have the resiit;) ,; =

0.054,which is slightly greater thaa(mg),,z = 0.052given .

in Table 11. directly to an estimate of the(m;) values for a peak from a

Thus, when compared to our estimate of the expected statfgle MRS spectrum following an estimate of the SNR plus
dard deviations, then, and m, values of our experimental knowledge of the noise standard deviation and the correls
values strongly suggest that the differences between the t&n length or, in the terms used in this papgfsise (PPM )
experimentam values can be easily attributed to errors due @nd the gap values. Hence our results give a ready means
noise in the spectrum. Therefore, any effect due to the br&iftimating the error in a particulan; value from a single
injury, in this case, must be less than the errors associated WitRRS spectrum.

the noise in the spectrum. Finally, we have illustrated how knowledge of tls€m;)
values may be used to readily assess the significance of a set
CONCLUSIONS experimental results derived from vivo *P MRS spectra.

What has emerged from this work is the knowledge that the

In this paper we have derived simple general formulas wigtrors in determining the signal parameter in a spectrum witl
which to determine the standard deviations @healues) and correlated noise, where the SNR is small, are much larger the
the correlation matrix elements (tpg values) for the param- expected and cannot be ignored. Thus as this situation |
eters used to define a specific peak in a MRS spectrum.dbserved frequently iftP in vivo MRS our work demonstrates
addition and, more importantly, we have shown how to detghat any interpretation, for example, of the chemical shift
mine, by several methods, the errors (tém,) values) in difference between the- and g-*'P in ATP is most likely
these parameters when they are used to estimate a semefningless unless it is coupled with a careful assessment
parameters to describe the signal within the peak. These errit likely errors. In such papers it should be mandatory to us
arise from the effect of complex correlated noise spectra on thstatistically precise method in determining the signal param
signal measurements. We have presented the general fornetefs and a reliable estimate of the errors due to the correlate
the o(m,) values and have shown that they reflect the averageise.
noise pattern across the spectrum and not within the vicinity of
the peak, as is the case for thevalues. ACKNOWLEDGMENTS
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