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The accurate interpretation of in vivo magnetic resonance spec-
troscopy (MRS) spectra requires a complete understanding of the
associated noise-induced errors. In this paper, we address the
effect of complex correlated noise patterns on the measurement of
a set of peak parameters. This is examined initially at the level of
a single spectral analysis followed by addressing the noise-induced
errors associated with determining the signal parameters from the
peak parameters. We describe a relatively simple method for
calculating these errors for any correlated noise pattern in terms of
the noise standard deviation and correlation length. The results
are presented in such a way that an estimate of the errors may be
made from a single MRS spectrum. We also explore how, under
certain circumstances, the lineshape of the signal may be deter-
mined. We then apply these results to reexamine a set of in vivo
31P MRS spectra obtained from rat brain prior to and following
moderate fluid percussion injury. The approach outlined in this
paper will demonstrate how meaningful results may be obtained
from spectra where the signal-to-noise ratio (SNR) is quite small
and where knowledge of the precise shape of the signal and the
detail of the noise pattern is unknown. In essence, we show how to
determine the expected errors in the spectral parameters from an
estimate of the SNR from a single spectrum, thereby allowing a
more discriminative interpretation of the data. © 1998 Academic Press

Key Words: correlation length; correlated noise; errors; magnetic
resonance spectroscopy; signal; standard deviations; traumatic
head injury.

INTRODUCTION

The application of phosphorus magnetic resonance spectros-
copy (31P MRS) to the study of metabolism and bioenergetics
in vivo has grown steadily over the past two decades. The
enticement of using31P MRS over conventional metabolic
analyses arises from its non-invasive and non-destructive na-
ture, which permits continuous spectra to be obtained from a
single organ or tissue in real-time. Routinely, free intracellular
magnesium concentration (free [Mg21]) and intracellular pH
are calculated from chemical shift assignments, and the ratio of

energy metabolites PCr, ATP, and Pi calculated from area
analysis (1).

As with any scientific technique however,31P MRS has
strengths and limitations. If these strengths and limitations are
not fully appreciated by MRS users, problems may arise with
respect to quantification and subsequent interpretation of re-
sults concerning a particular physiological or pathophysiolog-
ical state. We recently reported (2) that the intrinsic errors of
typical 31P MRS estimates of free [Mg21] in rat brain in vivo
are sufficiently large to cast doubt on the significance of
previously published results showing its decline in association
with moderate brain injury (3). We reached this conclusion by
investigating the intrinsic errors associated with chemical shift
assignments fromin vivo 31P MRS spectra. Using simulated
spectra over a range of 1.2 ppm, a relationship between the
standard deviation of the chemical shift position,s(m3) and
the signal-to-noise ratio (SNR) was derived empirically as
described by

s~m3! p SNR5 0.090. [1]

Although the focus of this paper is on31P MRS spectra, the
results are quite general and may be applied to any form of
spectroscopy. Conventionally, effort has been directed towards
minimizing noise levels in order to optimize the signal but in
some instances, and particularlyin vivo, the noise levels are
higher than acceptable. It is therefore critical to know the
limitations of such measurements. In addition, the noise pat-
terns may be quite complex and possess a frequency depen-
dence, in which case we are dealing with correlated noise.

Previous studies examining the accuracy and precision of
signal parameter measurements have focused on the errors in
determining a specific set of parameters. In particular, Posener
(4) examined the standard deviation of the height and position
of a Gaussian and Lorentzian shaped signal embedded in white
or uncorrelated noise. Chenet al. (5) extended Posener’s work
to include the linewidth standard deviation. They concluded
that the theoretical calculations of the standard deviations were1 To whom correspondence should be addressed.
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at least five times smaller than their experimental results ob-
tained from FT ICR and FT NMR spectra.

We shall be extending this approach to address the effect of
complex correlated noise patterns on the errors in determining
peak parameters and the mean values associated with a large
number of measurements from different spectra where the
signal is identical in each spectrum but has a different noise
pattern. We shall also show how to determine the appropriate
form of the errors in terms of the maximum noise height and
the SNR from knowledge of the mean standard deviation and
the correlation length of the noise. Conventionally, the SNR is
defined as the height of the signal/s, wheres2 is proportional
to the sum of the squares of the residuals—for more detail see
Ref. (6). We shall find it more useful, however, from a practical
point of view, to define the SNR very simply as the ratio of the
signal height/maximum noise height.

The current study is an extension of our previous work (2)
and includes a critical examination of the noise-induced errors
associated with complex correlated noise patterns in spectra.
This will be undertaken by (i) introducing the concepts of
statistical theory; (ii) analyzing simulated spectra of different
noise patterns; (iii) deriving relatively simple equations for
determining the standard deviations required; (iv) comparing
the mean values of the determined peak parameters, their
standard deviations, and correlation matrix elements obtained
from the spectra; and (v) plotting the relationship between
different m values. In so doing, we hope to provide a deeper
insight into the significance of noise-induced errors in estimat-
ing free [Mg21], pH, and phosphorus metabolites fromin vivo
31P MRS spectra.

IN VIVO MRS SPECTRA

A typical in vivo rat brain31P MRS spectrum is shown in
Fig. 1, where the phosphocreatine (PCr),g-, a-, and b-ATP
peaks (in decreasing frequency) are distinct, yet superimposed
upon a complex noise spectrum. All spectra were subjected to
a zero phase correction on the PCr peak and a first order phase
correction on thea-ATP peak and were multiplied with an
exponential function corresponding to a 25 Hz line broadening.
Prior to determining chemical shift assignments, we removed
the broadening component attributed to the immobile phospho-
lipids in the bone and membranes by subtracting a 400 Hz
broadening (convolution difference) in order to improve the
accuracy of resonance amplitude measurements. Figure 2 il-
lustrates two noise patterns, which are portions of31P MRS
spectra some distance from the31P peak region at a 10-fold
increased amplification. These specific noise patterns, most
likely arising from post-acquisition line broadening, are ob-
served in a peak free region of the MRS spectrum and account
for the observed fine structure on the signal peaks as shown in
some detail in our earlier paper (2). Similar 31P MRS spectra
are presented by Ingwall (7) in Langendorff-perfused rat
hearts. The origin of such noise patterns may occur through
line broadening to improve signal-to-noise ratios (8). In this
paper, the origin of the noise is of little concern. In order to
tackle the effect of the very characteristic noise in such spectra,
we have taken an unconventional approach. We have at-
tempted to quantify a noise spectrum in terms of a mathemat-
ical function expressed in terms of frequency and time using
the observed noise portion of the spectrum being investigated.

FIG. 1. A typical 31P MRS spectrum obtained from a rat brainin vivo.From high to low frequency (left to right) we observe phosphomonoesters, inorganic
phosphate (Pi), phosphodiesters, phosphocreatine (PCr) and the three phosphates of ATP (g-, a-, b-ATP). The frequency (in ppm) is relative to the PCr peak.
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As we will demonstrate, our work may be related to the more
conventional approach (6). The evidence is that manyin vivo
31P MRS spectra contain complex correlated noise patterns and
it is from such spectra that information about specific31P
nuclei is estimated.

Nevertheless, noise would have arisen from thermal white

noise mainly from the coil and the connection to the pre-
amplifier. In addition, the signals plus the white noise are
then processed electronically, involving amplification, fil-
ters, and Fourier transformation (6, 9) to ultimately produce
the in vivo spectra we consider as our starting point, with its
complex noise background. A standard deviation and cor-

FIG. 2. Two examples of the noise in the31P MRS spectra obtained from a rat brainin vivo.The intensity is 10-fold greater than that in Fig. 1. The frequency
(in ppm) is relative to the beginning of the noise spectrum under investigation.
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relation length characterize the noise from such spectra. We
shall show, using this information, how we may define the
noise in terms of a frequency and time dependent function
involving several random variables. It is this complex func-
tion which enables us to gain an insight into the likely errors
of any experimentally measured parameters. This back-
ground noise we shall refer to as correlated noise in this
paper. However, we wish to emphasize that whatever the
detailed processes involved in obtaining these spectra, we
are dealing with specific spectra which unequivocally com-
prise NMR signals superimposed upon a complex back-
ground of non-signal peaks. The paper uses the experimen-
tal observations to examine both the signal and non-signal
components. What emerges from this work is that knowl-
edge of the detailed structure of the non-signal component is
unimportant in estimating the signal characteristics from the
parameters obtained by curve fitting a non-linear equation to
a specific peak.

We may confirm the noise pattern in our spectra by
examining a portion of a spectrum where no signal peaks are
present (see Figs. 2a and 2b). As can be seen we have a
series of peaks randomly located across the spectrum. The
noise may be described as noise peaks that characterize the
frequency dependence of the noise. The example in Fig. 2a
comprises approximately 20 noise peaks where the zero
phase tends to dominate. In general, however, the phase of
the noise randomly varies across the spectrum, as illustrated
in Fig. 2b. The selected portion of the noise spectrum of
approximately 10 ppm in Fig. 2a may be fitted to 19 Lorent-
zian or Gaussian lineshapes of constant peak width (about
0.22 ppm) with varying heights and positions but zero
phase. It was found that the Lorentzian lineshape, as ex-
pected, gives a better fit. The maximum separation of the
noise peaks is less than approximately 1 ppm. It is these
noise peaks which will limit the signal information we may
obtain from our NMR spectra. This may be illustrated
further from our earlier paper, where we showed the marked
similarity between the observed NMR spectra and the sim-
ulated NMR spectra generated by a known signal superim-
posed upon a series of Lorentzian peaks. Not only were we
able to replicate the spectral detail across 20 ppm, but the
shape variability of a specific peak was clearly confirmed.

Next we need to consider how best to extract, from a
particular NMR peak, information about the signal embedded
within the peak. It is important to appreciate the fact that a
specific peak comprises both noise and signal. To begin the
process of analyzing a specific peak, we shall curve fit a
specific shape to the data making up the peak. This will involve
fitting a nonlinear equation. In this paper we shall use matrix
algebra to achieve this, thereby yielding a set of parameters and
their standard errors. The next step is to use this information to
determine the signal characteristics.

This may be illustrated very simply by considering a single

noise peak and a single signal peak both characterized by two
Lorentzian lineshapes given by

fa 5
m1

~m2~ xa 2 m3!
2 1 1!

1 m4. [2]

We shall choose, for the noise peak, npm1 5 3, npm2 5 80
ppm22, npm3 5 1.9 ppm, and npm4 5 0. The units of npm1

and npm4 are the same as those of the absorption scale. (The
noise peak npm2 value of 80 ppm22 corresponds to a half-
width of about 0.22 ppm, as observed in Fig. 2.) For the
signal we shall choose sm1 5 10, sm2 5 10 ppm22, sm3 5 2.0
ppm, and sm4 5 0. These two form a single peak; when we
analyze it as a single Lorentzian peak (1.4 to 2.6 ppm), we
obtain a very good fit that yields the valuesm1 5 11.930
(0.169),m2 5 13.217 ppm22 (0.724 ppm22), m3 5 1.973 ppm
(0.00209 ppm), andm4 5 0.257 (0.183). Thestandard errors
are given in brackets. The differences between the curve
fitted peak parameters and the signal parameters are far
greater than one or two standard errors. It is clear that these
standard errors cannot be used to determine the signal
parameters from a curve fit of the peak. This paper addresses
this problem and shows how to determine the errors in such
a way that from a single spectrum we may estimate the
signal parameters from the peak parameters obtained from
curve fitting. For the above spectrum comprising the two
peaks only and knowing that npm1 5 3 for the noise and sm1

5 10 for the signal, we shall show that thes values for this
case are given ass(m1) 5 1.287,s(m2) 5 3.03 ppm22, s(m3)
5 0.0239ppm, ands(m4) 5 1.056.Similar results will occur
using more complex noise backgrounds. Thus we are con-
fident that we can determine the signal characteristics from
the peak analysis using our determineds values. (The “np”
and “s” before themi values are used to differentiate be-
tween the noise (np) and signal (s) peaks. No prefix nor-
mally implies that themi values are obtained from the peak
analysis.)

Another aspect that requires consideration is the form of
the equation in determining the peak characteristics. This
may be categorized into the shape and a baseline. We shall
consider Lorentzian and Gaussian lineshapes. In addition,
we need to consider the phase of the signal. In this paper the
spectra have been collected in the absorption mode and no
attempt has been made to adjust for a dispersion mode
component. Inclusion of a small dispersion mode compo-
nent into the signal would affect the parameters obtained by
fitting the signal to only an absorption model. The differ-
ences may easily be determined. As an example, if the signal
is defined as sm1, sm2, sm3 5 2.000 and sm4 5 0, replacing
m1, m2, m3, andm4 in Eq. [2], and has a 5% dispersion mode
component, then them1, m2, m3, andm4 values obtained by
fitting a full absorption mode curve fit are, to a very good
approximation,
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m1 5 1.051 sm1

m2 5 0.281 0.801 sm2

m3 5 2.085

m4 5 20.0510 sm1.

Varying sm1 does not affectm2 andm3 but sm2 does slightly
affect m1, m3, and m4. (A 5% dispersion mode component
most likely would be observed.) In this analysis the spectral
range was 2.0 ppm.

These would apply across the spectrum, taking into account,
obviously, a different sm3 value. In the present paper we are
concerned only with effects that vary significantly across the
spectrum and hence affect each signal in the spectrum to a
different degree. In this work we are interested in relative
values and differences. Hence we shall not consider a disper-
sion mode component in analyzing our experimental signal
peaks.

Another question that needs to be addressed is how one
determines the most appropriate baseline. The answer will
depend very much on the specific spectral range that is being
analyzed. As our approach focused on analyzing a peak, which
contained a single NMR signal, we kept the spectral range
rather small, as explained in our earlier paper. We chose 1.2
ppm. We considered three baseline options described by them4

andm5 terms in the equation

fa 5
m1

~m2~ xa 2 m3!
2 1 1!

1 m4 1 m5xa. [3]

We found that the frequency dependent baseline term did not
improve the analysis and hence we focused on the two cases
whenm4 was zero or nonzero, which resulted in analyses for
three or four parameters. In particular, we shall show thatm4

must be included to compensate for phase variations in the
noise. Observation of such a frequency dependent term could
not be justified from the peaks analyzed in the spectra. In
addition, we need to bear in mind that in curve fitting it is
important to keep the number of parameters as small as pos-
sible.

In our earlier paper we compared several techniques in
determining the position of the NMR peaks and showed that
the curve fit of a Lorentzian lineshape gave superior results
compared with the peak picking and the SISCO line fit meth-
ods. This is understandable as the curve fit involving a line-
shape uses all the peak data. We used two programs to handle
the curve fitting of non-linear equations. The Kaleidagraph
commercial software, which uses a specific algorithm, gave the
equation parameters, their standard errors, the chi square, and
the R values. Our own written program in Mathematica used
matrix algebra, with the equations given in this paper, and
produced the same information plus the correlation matrix
elements.

SIMULATION OF MRS SPECTRA

We may simulate a typicalin vivo MRS spectrum with a
single peak superimposed on a multinoise spectrum. The noise
spectrum is chosen as a series of randomly determined noise
peaks. Such a spectrum is shown in Fig. 3. The peak is a
composite of the noise and the signal. An analysis of the peak

FIG. 3. An example of a simulated spectrum with one signal embedded in a noise spectrum of Lorentzian shaped peaks generated randomly by height and
position with random phase. The SNR is defined as 5:1. The curve fitted single Lorentzian lineshape peak is superimposed on the spectrum.
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is carried out assuming a specific shape of the peak, and a set
of parameters with their estimated errors describing the peak is
evaluated. We shall define the set of parameters as a set ofmi

values and their errors (standard deviations) bys i values. The
mi values and thes i values are very dependent on the signal
and the noise making up the spectrum across the observed
peak. Often we are more interested in using themi values from
the peak analysis to estimate themi values for the signal. This
may be achieved by determining the average of the peakmi

values with the corresponding standard deviations,s(mi) val-
ues. These values are dependent on the signal and the average
noise across the complete spectrum, which we define asxnoise

2 .
We reiterate that themi values and thes i values are for a
specific peak whereas the mean of a large number ofmi values
and the correspondings(mi) values may be used to character-
ize the signal under investigation.

As an illustration, for the simulated spectrum shown in Fig.
3 we have the result from fitting Eq. [3], withm5 5 0, to the
signal peak (sm1 5 5; sm2 5 10 ppm22; sm3 5 5 ppm; sm4

5 0), using a precise analysis for a nonlinear equation,m1 5
4.337;s1 5 0.092;m2 5 6.849 ppm22; s2 5 0.469 ppm22;
m3 5 4.983ppm; s3 5 0.0081 ppm;m4 5 20.0897;s4 5
0.021.From 1000 such simulated spectra with the same signal
we find thats(m1) 5 0.365,s(m2) 5 2.36 ppm22, s(m3) 5
0.0238 ppm, ands(m4) 5 0.0971 whereas the means
values (s i values) ares1 5 0.0877,s2 5 0.571 ppm22, s3 5
0.00556 ppm, ands4 5 0.0169. It is the marked differences
betweens(mi) and s i, which for uncorrelated noise are the
same, that are a characteristic of correlated noise. In essence,
this paper explores the differences and shows how to predict
the eight sigmas, thes i values and thes(mi) values, from
specific characteristics of the background noise.

In this paper we show how to calculate: (i) themi values and
the correspondings i values for a single peak; (ii) the signalmi

values and the correspondings(mi) values; and (iii) thexnoise
2

value and the correlation length, which lead to a convenient
way to estimate thes(mi) values as functions of the noise
height and the SNR. Thes(mi) values are, thus, characteristic
of randomly multipeak correlated noise spectrum.

In this paper, spectra were simulated with a Power Macin-
tosh computer using Excel (Microsoft version 5.0), Kaleida-
graph (Abelbeck version 3.0.4) and Mathematica (Wolfram
Research version 2.2.2.1 and 3.0) software. Results were con-
firmed with at least two independently written programs. All
spectra and graphs presented in this paper were obtained using
Kaleidagraph.

CONCEPTS OF STATISTICAL THEORY

We begin with a set ofQ observations which may be
expressed as {fa, xa}. In the case of an MRS spectrum
comprising a signal (or signals) and a series of noise peaks,fa

is the total height at frequencyxa. In order to analyze a specific
peak in the spectrum, the peak may be expressed as a mathe-

matical function withn parametersmi. In other words, the
peak is defined as

fa 5 f $ xa, m1, m2, . . . , mn%. [4]

Determination of then parameters from theQ observations
requires the solution of a set of non-linear equations. The
equations may be solved by expanding the function in a Taylor
series, thereby reducing the problem to one of a linear form
where

Dfa 5 f a
obs2 f a

calc 5 O
i51

n
­fa

­mi
Dmi. [5]

We can choose an initial set of then m-values and determine
the Dfa values to give a 13 Q F matrix. Then 3 Q matrix
(denoted as matrixA) is then determined, where theA matrix
elements are given by

aan 5
­fa

­mn
. [6]

From theA andF matrices we calculate theDM matrix, where

DM 5 ~A9A!21A9F. [7]

DM is the matrix containing the calculated change inm values
as elements. The new set ofm values is chosen using

Mnew 5 Mold 1 qDM, [8]

where q is chosen to aid convergence and 0# q # 1. At
convergence it can be shown that the value ofF9F, i.e., ¥a

( f a
obs 2 f a

calc)2, is a minimum. TheF9F value is defined as the
x2 value.

The standard deviation of them values is given by

s i 5 @~H21! ii ]
1/2s, [9]

where theH matrix is described by

H 5 A*A. [10]

The correlation matrix elements,r ij , are calculated by

r ij 5
@~H21! ij #s2

s is j
. [11]

The details of the derivations of the above equations are
provided by Hamilton (10). To determine the peak parameters
for a large number of simulated spectra we wrote a special
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Mathematica program, which could handle some 1500 spectra
in about 12 h when the spectral range was about 2 ppm. At
larger spectral ranges it took much longer and easily several
days of computing time. The program used Eq. [8], whereq
was chosen as 0.2 or 0.5 with 40 or 25 iterations. An approx-
imate initial set ofm values was judiciously chosen to begin
the process. Thes values were determined using Eq. [9] where

s 5 H x2

Q 2 nJ
1/ 2

. [12]

Q is the number of data points andn the number of parameters
being determined. In this work it is either 4 or 3 depending on
whether or not we treatedm4 as a parameter. Thes-value is
expressed in the absorption units. When the SNR was small
and certainly less than five the iterative process occasionally
converged, in handling multi-peak noise spectra, to unrealistic
values such as negativem1 andm2 values. Our program was
written to prevent this from happening.

To test our program we checked them-parameters and the
sigmas against the commercially available Kaleidagraph curve
fitting program which uses the Levenberg–Marquardt algo-
rithm (11). The rhos were obtained from Eq. [11].

We shall now examine an MRS spectrum which comprises
a single Lorentzian peak defined as

fa 5
m1

~m2~ xa 2 m3!
2 1 1!

1 m4, [13]

or as a single Gaussian peak defined as

fa 5 m1exp~2ln~2!m2~ xa 2 m3!
2! 1 m4, [14]

wherexa represents the observed frequency scale (in ppm),m1

5 peak height,m2 5 4/(linewidth)2, m3 5 position of the
center of the peak (in ppm), andm4 5 baseline. The frequency
interval between consecutive data points is usually a constant,
Dx. We have definedu 5 ( x 2 m3)=m2 (or u 5 ( x 2
m3)=(ln(2)m2) and henceDu 5 =m2Dx (or Du 5
=(ln(2)m2)Dx). We then define aG matrix as

Gij 5 HijDu 5 HijDxÎm2 ~or HijDxÎ~ln~2!m2!!, [15]

where

Gij 5 O
a

N S ­fa

­mi
D

a

S ­fa

­mj
D

a

Du. [16]

Provided the intervals between the data points are small and
equal, Eq. [16] may be written as

Gij 5 E
a

b ­f

­mi

­f

­mj
­u, [17]

where the spectrum ranges fromu 5 a to u 5 b. If the center
of the peak, atm3, is close to the mid-point of the spectral data
being analyzed, theG matrix elements may be written, for both
Lorentzian and Gaussian cases, as

G11 5 k11; G12 5 m1k12/m2; G13 5 m1Îm2k13; G14 5 k14;

G22 5 m1
2k22/m2

2; G23 5 m1
2k23/Îm2; G24 5 m1k24/m2;

G33 5 m1
2m2k33; G34 5 m1Îm2k34; G44 5 k44. [18]

We note that Hi j 5 Gi j / (Dx=m2) and Hi j 5 Gi j /
(Dx(ln[2]m2)0.5) when the peak is Lorentzian and Gaussian,
respectively. Thek-values for both cases are:

Lorentzian:

k11 5 arctan@w# 1
w

~1 1 w2!

k12 5 2
arctan@w#

4
2

w

4~1 1 w2!

1
w

2~1 1 w2!2

k13 5 0

k14 5 2 arctan@w#

k22 5
arctan@w#

8
1

w

8~1 1 w2!

2
7w

12~1 1 w2!2 1
w

3~1 1 w2!3

k23 5 0

k24 5 2arctan@w# 1
w

~1 1 w2!

k33 5
arctan@w#

2
1

w

2~1 1 w2!

1
w

3~1 1 w2!2 2
4w

3~1 1 w2!3

k34 5 0

k44 5 2w, 





[19]

where w 5 (spectral range)=m2/ 2. The total area under a
Lorentzian peak ism1p/=m2 with a linewidth5 2/=m2.
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Gaussian:

k11 5
Îp

Î2
erf@Î2w#

k12 5
w

2
exp@22w2# 2

Îp

4Î2
erf@Î2w#

k13 5 0

k14 5 Îp erf@w#

k22 5 2S3w

8
1

w3

2 Dexp@22w2# 1
3Îp

16Î2
erf@Î2w#

k23 5 0

k24 5 w exp@2w2# 2
Îp

2
erf@w#

k33 5 S22w exp@22w2# 1
Îp

Î2
erf@Î2w#D ln@2#

k34 5 0

k44 5 2w, 





[20]

where, in this case,w 5 (spectral range)=(ln(2)m2)/ 2. The
total area under a Gaussian peak ism1

=p/=(ln(2)m2) with a
linewidth of 2/=m2. We note that

erf@ z# 5
2Î2

Îp E
0

z

exp~2x2!dx.

From Eq. [9] we may determine expressions for the four
standard deviations in terms of thek values in Eq. [19] for the
Lorentzian case and in Eq. [20] for the Gaussian case and these
are given below:

s1 5 ~fac!1/ 2
g@1#

X
s

s2 5
m2

m1
~fac!1/ 2

g@2#

X
s

s3 5
1

m1Îm2

~fac!1/ 2
g@3#

X
s

s4 5 ~fac!1/ 2
g@4#

X
s,

6 [21]

where fac5 Dx(m2)0.5 for the Lorentzian case and fac5
Dx(ln(2)m2)0.5 for the Gaussian case.

The correlation matrix elements follow from Eq. [11] and
are

r12 5
m2Îm2Dxr@1, 2#

m1Xs1s2
s2

r13 5
Dxr@1, 3#

m1Xs1s3
s2

r14 5
Îm2Dxr@1, 4#

Xs1s4
s2

r23 5
m2Dxr@2, 3#

m1
2Xs2s3

s2

r24 5
m2Îm2Dxr@2, 4#

m1Xs2s4
s2

r34 5
Dxr@3, 4#

m1Xs3s4
s2,

6 [22]

where

g@a# 5 $kbbkggkdd/6 2 kbbkgd
2 / 2

1 kbgkbdkgd/3%1/ 2

r@a, b# 5 kagkbgkdd 1 kabkgd
2 / 2

2 kabkggkdd/ 2 2 kagkbdkgd

and

X 5 $kab
2 kgd

2 /8 2 kaakbbkgd
2 /4 1 kaakbbkggkdd/ 24

1 kaakbgkbdkgd/3 2 kabkagkbdkgd/4%1/ 2.

a Þ b Þ g Þ d anda, b, g, andd all take the values 1 to 4,
andr11 5 r22 5 r33 5 r44 5 1. The correlation matrix,r, is
{ r ij }.

In the case of fitting only the threem valuesm1, m2, andm3

to the peak (m4 is not a variable) we have

X 5 $2kaakbg
2 / 2 1 kaakbbkgg/6 1 kabkagkbg/3%1/ 2

g@a# 5 $kbbkgg/ 2 2 kbg
2 / 2%1/ 2

r@a, b# 5 kagkbg 2 kabkgg.

In previous work by Posener (4), the integral values for a
Lorentzian lineshape were taken between plus and minus in-
finity, which give the results
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s1 5 ~Îm2Dx!1/ 2
2s

Îp
,

s2 5 ~Îm2Dx!1/ 2
m2

m1

4Î2s

Îp
,

s3 5 ~Îm2Dx!1/ 2
1

m1Îm2

2s

Îp
,

s4 5 0,

r12 5
1

Î2
,

r13 5 r14 5 r23 5 r24 5 r34 5 0.

6 [23a]

The equivalent set when the spectral range is very large and
when the signal is Gaussian is

s1 5 ~Îln~2!m2Dx!1/ 2S 3

Î2p
D 0.5

s,

s2 5 ~Îln~2!m2Dx!1/ 2
m2

m1
4S 1

Î2p
D 0.5

s,

s3 5 ~Îln~2!m2Dx!1/ 2
1

m1Îm2
S Î2

ln~2!Îp
D 0.5

s,

s4 5 0,

r12 5
1

Î3
,

r13 5 r14 5 r23 5 r24 5 r34 5 0.

6 [23b]

The s i values given by Eq. [21] are only applicable for the
single peak measurement and are affected by the specific noise
pattern near the peak being analyzed. They are a measure of the
errors in the specificmi values in analyzing thepeak.They tell
us nothing about the errors in themi values for thesignal. In
order to determine these errors we need to address the overall
results using them data from several spectral analyses. This
leads to the mean values and the corresponding standard de-
viations,mi ands(mi).

Thes(mi) values may be expressed as functions ofN andS,
the maximum noise height and the signal height, respectively,
by examining the appropriateDmi value. From Eq. [7], it
follows thats(m1) ands(m4) are proportional toN whereas
s(m2) ands(m3) are proportional toN/S. This follows since
Dmi, the matrix elements ofDM, can be shown to be propor-
tional toN or N/S. To a good approximation, the form ofDmi

values reflects the form of {¥ (mi 2 mi)
2} 1/ 2, which is

proportional tos(mi). We shall examine this in more detail
later with an example.

An experimentalist is usually interested in the two valuesmi

ands(mi), wheres(mi) is a measure of the error due to the

noise on the specificmi value. These values would be deter-
mined by analyzing a large number of spectra. However in
specific cases, and certainly fromin vivo measurements, spec-
tral information is typically determined from a limited number
of spectra. If, however,s(mi) is known or may be estimated
from the noise pattern in a spectrum then, from a single NMR
measurement, we have at least an estimate of the error in the
measurement of themi values. Therefore the present paper
primarily focuses on determining thes(mi) values for a range
of noise patterns where the measured signal may be either
Lorentzian or Gaussian in shape. The approach taken may be
adopted for determining the errors in the parameter measure-
ments of any signal embedded in a simple or complex random
correlated noise pattern. This occurs in the many fields of
spectroscopy.

RESULTS

The results of statistical theory can now be applied to ex-
amining the errors in the measurement ofm1, m2, m3, andm4

of any peak in a MRS spectrum. This is accomplished by
analyzing a simulated spectrum generated from a specific noise
pattern and a defined signal peak. As we mentioned earlier the
challenge was to choose an appropriate frequency and time
dependent function, which was relatively simple to handle and
yet characterize most, if not all, of the observed noise patterns.

To illustrate the process and to gain an insight into the effect
that a wide range of noise patterns may have on the spectral
measurements, we shall begin with a noise spectrum generated
by a series of Lorentzian peaks defined as

noise spectrum5 N p R~1! O
n

3 Hcos@2pu#
1

$npm2~dn 2 d!2 1 1%

1 sin@2pu#
npm2

1/ 2~dn 2 d!

$npm2~dn 2 d!2 1 1%J .

[24]

R(1) is a random number from 0 to 1;u, the noise phase, may
vary from 0 to 1;N is the maximum noise height;dn 5 dn21

1 gapR(1); and the gap is themaximum distance between the
noise peaks. The npm2 5 80 ppm22 in Eq. [24] gives a noise
peak with a half-width of close to 0.22 ppm, as observed, for
the noise peaks, from the experimental spectra.R(1) will have
a mean of 0.5 and a standard deviation of 1/(2=3). (R(1))2

will have a mean of1
3

and a standard deviation of 2/(3=5).
Similar results would be achieved with a normal distribution of
random numbers, which would have a standard deviation of
approximately 0.25. With random phase the noise spectrum
will range from2N to N with a zero mean value. The range
and the mean value are, of course, phase dependent. For zero
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phase, for instance, the range is from 0 toN with a mean value
of 0.5.

The noise spectrum spectral range, np(range), was chosen as
being greater than the peak spectral range analyzed. In the simu-
lated cases of multi-peak noise the np(range) was larger than the
range below which the results were affected. In other words, by
increasing the noise range from the spectral range chosen, a point
was reached where a further increase of the noise range did not
affect the results of the peak analysis. In the case of one or three
noise peaks the approach was different, as will be explained later.

A very important property of this type of analysis is that if
N and S are increased by the same factor and the other
parameters (including the randomness of the noise spectrum)
remain unchanged, the analysis would yield an exact increase
in m1, m4, s1, s4, ands by the same factor,x2 would increase
by the factor squared, whereasm2, m3, s2, and s3 would
remain exactly the same.

Also, if we introduce a frequency scale parameter so that we
may change the relative frequency which includes changing
npm2 by npm2/(scale)2, sm2 by sm2/(scale)2, sm3 by sm3 p

(scale) andDx by Dx p (scale), then the effect of changing the
gap in Eq. [24] by a factor and the scale by the same factor only
changes them2 ands2 values by 1/(factor)2 and them3 ands3

values by the factor. The other values, namely,m1 and s1

values,m4 ands4 values, andx2 ands values, remain exactly
the same. We shall often utilize these properties in the paper.

Next we direct our attention to the noise and its relationship
to x2. If the noise did not affect the signal in the analysis then
the expression¥a ( f a

obs 2 f a
calc)2 would become

xnoise
2 5 O

a

~ f a
noise!2 5 $noise spectrum%2. [25]

The “noise spectrum” in Eq. [25], in general, is given by Eq.
[24]. However,xnoise

2 varies across the spectrum due to the
random nature of the noise. For a single noise peak,

xnoise
2 5

N2p

2Înpm2Dx
. [26]

For reasons which will become apparent later, we shall con-
sider, also,xnoise

2 for the multi-noise peak spectrum when the
phase for the noise is constant across a spectrum, as well as
when the phase varies randomly. When the phase is constant
across a spectrum the average value ofxnoise

2 (per ppm21) may
be written as a series, namely,

xnoise
2 5

N2p

DxÎnpm2
H1

3
1 E

0

1 2

~4 1 npm2a
2!

da 1 E
0

1 E
0

1

3
2

~4 1 npm2~a 1 b!2!
dadb1 . . .J , [27]

where thenth integral involving the gapsa, b, c, etc., may be
written as

O
p50

n

~21!p
n!

p! ~n 2 p!!
gnF p

0, . . . , 0

~n 2 p!

1, . . . , 1
G , [28]

where

gn@a, b, c, . . . , r , s, t# 5
1

mn/ 2

3 H~K n
~0! 1 K n

~1!z 1 K n
~2!z2 1 . . . 1 K n

~n21!zn21!arctan@ z/ 2#
1 ~Ln

~0! 1 Ln
~1!z 1 Ln

~2!z2 1 . . . 1 Ln
~n22!zn22!log@4 1 z2#J ,

and wherez 5 (a 1 b 1 c 1 . . . 1 r 1 s 1 t)=m2. The
expression

gnF p

0, . . . , 0,

~n 2 p!

1, . . . , 1
G

in Eq. [28] means that withina, b, c, . . . , r , s, t which have
the integral limits of 0 and 1, we havep of them equal to 0 (it
does not matter which ones) whereasn 2 p values are equal
to 1. Recursion formulas for theK andL values are

Qn
~0! 5 2

4

~n 2 1!~n 2 2!
Qn22

~0!

Qn
~m! 5

Qn21
~m21!

m
. [29]

Qn
(0) 5 Kn

(0) whenn 5 1, 3, 5, 7, . . . ;Qn
(0) 5 Ln

(0) whenn 5
2, 4, 6, 8, . . . ; andK1

(0) 5 2L2
(0) 5 1.

The xnoise
2 (per ppm) for any gap value may be determined

from Eq. [27] by replacing npm2 by npm2 (gap)2. Below we
give nine examples using 12 terms in Eq. [27] where npm2 5
80 ppm22 andN 5 1.

if gap5 0.500 ppmthenxnoise
2 ~per ppm! 5 30.17

if gap5 0.625 ppmthenxnoise
2 ~per ppm! 5 20.86

if gap5 0.750 ppmthenxnoise
2 ~per ppm! 5 15.59

if gap5 0.875 ppmthenxnoise
2 ~per ppm! 5 12.28

if gap5 1.000 ppmthenxnoise
2 ~per ppm! 5 10.05

if gap5 1.125 ppmthenxnoise
2 ~per ppm! 5 8.46

if gap5 1.250 ppmthenxnoise
2 ~per ppm! 5 7.28

if gap5 1.375 ppmthenxnoise
2 ~per ppm! 5 6.38

if gap5 1.500 ppmthenxnoise
2 ~per ppm! 5 5.66.
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The same results would have been obtained from Eq. [27] by
replacing 1 in the integrals, Eq. [28], by the gap value and
dividing xnoise

2 (ppm21) by the gap value.
When the phase varies randomly the result forxnoise

2

(ppm21) greatly simplifies to

xnoise
2 ~ppm21! 5

N2p

3Dx gapÎnpm2

. [30a]

The companion equation, which measures the correlation, may
be expressed as

xnoise~n!xnoise~n 1 dn! 5
xnoise

2

~1 1 ~npm2/4!dn2!
. [30b]

From Eq. [30b], a plot ofxnoise(n)xnoise(n 1 dn) againstdn will
yield xnoise

2 and npm2. Using Eq. [30a], with knowledge of
those two values, would yield the gap value. Care, however,
needs to be exercised in using Eq. [30b] if the spectral range is
not very large. From 1500 simulations of a 10 ppm noise
spectrum generated, after a small correction for a finite spectral
range, with npm2 5 80 ppm22 and gap5 0.5 yieldedxnoise

2 5
116.27 ppm (0.17 ppm) and npm2 5 80.75 ppm22 (0.38
ppm22) whendn ranged from 0 to 1 ppm in steps of 0.1 ppm.
(The errors are given in brackets.) From Eq. [30a],xnoise

2 5
117.1 ppm. Ideally the number of simulations should be much
larger to obtain better agreement.

In addition, we have the relationship:

gap5
2

peaks~ppm21!
. [31]

Peaks (ppm21) is the average number of random peaks per
ppm. Experimentally,xnoise

2 (ppm21) and the gap value may be
determined readily. (Often Eq. [31] can be used quickly, to a
good approximation, if appropriate portions of the noise spec-
trum are observed, such as in our Fig. 2a.) From these two
values the value of npm2 follows. For example, withN 5 1,
if xnoise

2 (ppm21) 5 5.85 and the gap5 1 then from Eq. [30],
npm2 5 80.1 ppm22, if xnoise

2 (ppm21) 5 5.85 and the gap5
0.625 then from Eq. [30], npm2 5 205 ppm22 and, if xnoise

2

(ppm21) 5 9.36 and the gap5 0.625 then from Eq. [30], npm2

5 80.1 ppm22. It is the xnoise
2 (ppm21), or the noisesnoise

value, and the gap, or the correlation length, which character-
izes the noise spectrum. Equations [30a], [30b], and [31]
enable us to calculate, from the noise spectrum, the noise
standard deviation,snoise, from xnoise

2 , the gap value or the
correlation length, and then the npm2 value, thus describing the
Lorentzian lineshape, which we have defined as characterizing
the correlated noise.

We may determine, from Eq. [30], when the correlated noise
approximates the uncorrelated case. The gap may be replaced

by Dx and we would expect the linewidth of the correlated
noise to be less thanDx. Thusxnoise

2 (ppm21) would be less
thanN2p/(6Dx) or less than26.2N2; i.e., for the uncorrelated
noise thesnoisevalue would be less thanN=(p/6) 5 0.72N,
and this value is about 1.25 times larger than the uncorrelated
snoise-value ofN/=3, with a noise range of2N to N.

We may check our simulated noise spectra by determining
the xnoise

2 (ppm21) and the gap values. Choosing npm2 5 80
ppm22, Dx 5 0.02 ppm, and gap5 1, we obtainxnoise

2

(ppm21) 5 5.85 (N 5 1). Choosing a noise range of 5 ppm,
and a spectral range of 1.2 ppm then from 6000 simulated
spectra, where the noise phase is random, we obtainxnoise

2

(ppm21) 5 5.90, with a large standard deviation of 5.01, and
a gap value of 0.994 ppm.

It is clear that the phase, although random when examined
over a large number of spectra, may be more accurately de-
scribed by approximating a specific value over a limited spec-
tral range in a specific spectrum. This will be particularly true
when the number of noise peaks in the spectrum under inves-
tigation is very small, say, less than 10. Hence this effect must
be taken into account in determining the form of the equation
to be used to characterize the signal. The inclusion of them4

term will handle variations of phase within the noise spectrum.
We found that, althoughm4 was very phase dependent and
s(m4) phase sensitive the others(mi) values, to a good
approximation, were independent of the phase. In addition, the
form of thes(mi) values as functions ofN andS, as predicted,
is only achieved using them4 value in curve fitting the signal.
We have shown that if the problem were reduced to only three
parameters then thes(m2) ands(m3) values from simulated
spectra, for example, would not be proportional toN/S as
expected.

With this as background, we shall now use some examples
to illustrate how we can calculate the associated errors.

The Effect of a Single Noise Peak

We shall choose the noise peak as Lorentzian (see Eq. [24],
whereN 5 0.25, 0.5, 0.75, and 1with R(1) set at unity) and
allow the noise peak to move from 0.5 to 3.5 ppm at 0.01 ppm
intervals (i.e., np(range)5 3.0 ppm). The phase of the noise is
chosen as zero. The results we are determining are independent
of the noise phase to a very good approximation and this will
be discussed later. Note that the same results would be ob-
tained by allowing the noise peak to randomly move between
0.5 and 3.5 ppm. The signal (Lorentzian lineshape) is defined
by Eq. [2], where the signalm1 value varies from 5 to 20 with
signalm2 5 10 ppm22, signalm3 5 2 ppm, and signalm4 5
0. Later we shall vary the signalm2 value. The spectral range
(i.e., ns(range)) was chosen as 1.2 ppm with intervals (Dx) of
0.02 ppm. The peak is analyzed using Eq. [8] and the peak
values m1, m2, m3, and m4 are determined. The peakmi

values are markedly dependent on the position of the noise
peak, as illustrated in Figs. 4a and 4b form1 andm3. It can be
shown that for SNR values greater than 5,
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mi } ~N! f ~for i 5 1 and 4!

mi } ~N/S! f ~for i 5 2 and 3!,

wheref is a function of the position of the noise peak and the
signalm2 value. For example, in Fig. 4b,

m3 5 2 1 N/S p ~position2 2!

p exp@26.6 p ~position2 2!2#. [32]

This shows thats(mi) for SNR values greater than 5 are
proportional toN (wheni 5 1 and 4) and proportional to SNR
(when i 5 2 and 3).

FIG. 4. The mi value as a function of the position of the single noise peak for four cases when the noise peak height is 0.25 (inner curve), 0.5, 0.75, and
1.0 (outer curve). The Lorentzian signal is at the position 2.0 ppm with a height of 10. (a)mi 5 m1. (b) mi 5 m3.
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Using theDmi values also yields the sameN andSdependence
and is a general property unrestricted by the complexity of the
noise pattern. Figures 5a and 5b provide two examples where the
results from 100 multinoise simulated spectra are matched for two
different signal parameters. For the peakm1 value case the slope
is 1.0 (theN value is the same) whereas for the peakm2 case the
slope is 0.25 (the ratio of theN/Svalues is 5/20). In contrast to the

signalm1 value (S) andN, it should be noted that the signalm2

value does not factor out. Varying the signalm2 value affects the
form of the above function. In Eq. [32], for example, this would
correspond to changing the number 6.6 for different signalm2

values. We obtain the following results, which may be obtained
by analyzing the specific data or integrating the appropriate func-
tions such as Eq. [32]:

FIG. 5. (a) A plot of 100 pairs ofm2 values for two different signals with the same noise pattern. The line is given by (m2-10)y-axis5 (5/ 20)p (m2-10)x-axis.
(b) A plot of 100 pairs ofm1 values for two different signals with the same noise pattern. The line is given by (m1-20)y-axis 5 (1/1) p (m1-5)x-axis.
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Signal—Lorentzian

s~m1! 5 0.429N

s~m2! 5 10.1~N/S!

s~m3! 5 0.0796~N/S!

s~m4! 5 0.352N.
6 [33]

Signal—Gaussian

s~m1! 5 0.335N

s~m2! 5 6.70~N/S!

s~m3! 5 0.0708~N/S!

s~m4! 5 0.270N.
6 [34]

The peak was analyzed using a Lorentzian lineshape for the
results in Eq. [33] and Gaussian for the results in Eq. [34].
These results, to a very good approximation, are phase inde-
pendent. For example, from an examination of 20 phase values
between 0 and 1 we obtain the following results whenS 5 5
and a Lorentzian lineshape:

s~m1! 5 0.442 ~0.011! @s~m1! 5 0.429#

s~m2! 5 2.13 ~0.11! @s~m2! 5 2.02#

s~m3! 5 0.0158~0.0019! @s~m3! 5 0.0159#

s~m4! 5 0.0.383~0.017! @s~m4! 5 0.0.352#.
6 [35]

The standard deviations are given in curved brackets. On the
right, in square brackets, are the values obtained from Eq. [33].
In this paper, these differences were relatively insignificant in
our exploration of matching the results from simulated multi-
noise spectra where the likely errors, due to limitations of the
finite number of analyses that could be feasibly handled, were
much greater.

If the noise range is varied, we may determine a new set of
s(mi) since (s(mi))

2 is inversely proportional to the noise
range. For example, the above results were obtained when the
noise range was 3 ppm. To obtain the results when the noise
range was 14 ppm we would multiply the above results by
(3/14)1/2.

We may explore the effect of changing the spectral range
from 1.2 ppm chosen above. In this case we shall choose the
noise range of 8 ppm. In Table 1 we have provided five
different spectral range results using a Lorentzian signal of
height (sm1) 5. Note that multiplying the values when the
spectral range is 1.2 by (8/3)0.5 yields, to a good approxima-
tion, the appropriate values from Eq. [33]. These results show
that thes(mi) values are smaller when the spectral range is
increased, with the exception of thes(m3) value, which re-

mains almost constant. Later we shall show how we may relate
these results to any multipeak noise spectrum.

The Effect of Three Noise Peaks

Next we replace the single Lorentzian noise peak with three
Lorentzian noise peaks where the peak positions are

peak 15 p,

peak 25 p 2 R~1!

peak 35 p 1 R~1!.

The signal height (sm1) is 5 and the spectral range is 1.2 ppm.
When np (the noise range) varies from 0.5 to 3.5 ppm and the
height of the three noise peaks varies randomly from 0 to 1, we
obtain the following results from the single signal peak anal-
ysis:

Signal–Lorentzian

s~m1! 5 0.416 ~0.423!

s~m2! 5 1.94 ~1.99!

s~m3! 5 0.0155~0.0157!

s~m4! 5 0.345 ~0.347!.
6 [36]

The signal peak was analyzed using a Lorentzian lineshape for
the results in Eq. [36]. From Eq. [27], thexnoise

2 value is given
by

xnoise
2 5

pN2

DxÎm2
H1

2
1 E

0

1 2

~4 1 m2a
2!

da

1
1

2 E
0

1 E
0

1 2

~4 1 m2~a 1 b!2!
dadbJ . [37]

In this casexnoise
2 5 11.8N2. This is in contrast to thexnoise

2

value for the single noise peak of8.78N2 calculated from
Eq. [26].

TABLE 1
The Results of Changing the Spectral Range on the Standard

Deviations of the Average mi Values Arising from the Interaction
of a Single Noise Peak within 64 ppm of the Signal (S 5 5)

Spectral range (ppm) s(m1) s(m2) s(m3) s(m4)

0.75 0.431 1.41 0.00910 0.401
1.2 0.267 1.20 0.00979 0.219
2 0.203 1.14 0.0104 0.133
4 0.175 1.04 0.0105 0.0689
6 0.170 0.998 0.0105 0.0441
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We may use the following relationship to estimate thes(mi)
values of a three peak noise spectrum from the single noise
peak analysis:

s~mi! l 5 s~mi!k p Snp~range!k p xnoise
2

np~range! l p 8.78D
1/ 2

. [38]

The np(range) for the three noise peaks is greater than 3 since
the central noise peak has a range of 3 ppm and the total range
is 5. The effective range, in this case, is approximately 4.15
ppm. Hence we may obtain to a good approximation thes(mi)
values for the three noise peaks interacting with the signal (Eq.
[38]) using thes(mi) value results for a single noise peak (Eq.
[33]). We obtain the values given in brackets in Eq. [36].

The Effect of n Noise Peaks

We may extend these results for a single noise peak to any
pattern of noise peaks using the calculatedxnoise

2 value (per
ppm). From Eq. [27], using 12 terms thexnoise

2 value is
10.05N2 (per ppm) for the complex noise pattern of a large
number of noise peaks where the gap is chosen as unity. The
noise peaks will interact with the signal as some function of the
distance from the signal as shown for the single noise peak case
in Fig. 4. Hence to use thexnoise

2 value (per ppm) for a
multipeak noise spectrum we need to replacexnoise

2 by (spectral
range)p xnoise

2 (ppm21)/np(range)i in Eq. [38], where (spectral
range)/np(range)i may be expressed as a factor. Therefore, we
may rewrite Eq. [38], in order to compare the multi-peak noise
with the single noise peak spectrum, as

s~mi! l 5 s~mi!k p Snp~range!k p factor p xnoise
2 ~ppm21!

8.78 D 1/ 2

.

[39]

In the case when the phase of the noise is random, Eq. [39]
simplifies to the expression

s~mi! l 5 s~mi!k p Snp~range!k p 2

3 gap D 1/ 2

. [40]

From Eqs. [39] and [40], if the phase of the noise is constant
across the spectrum under investigation, the factor in Eq. [39]
is given as

factor5
xnoise

2 ~ppm21! random phase

xnoise
2 ~ppm21!specific phase

. [41]

We shall explore the results from Eqs. [39] and [40] by
simulating multi-noise spectra and comparing thes(mi) val-
ues. The major problem, however, in accomplishing this goal is
that we must carry out a very large number of simulations to
gain reliable results and this will depend very much on the

speed of the computer used. In the final stages of this paper we
have been able to considerably increase the number of simu-
lations within realistic times of less than a day, which has
enabled the inclusion of the exploration of a wider range of
examples. For instance we have used up to 6000 simulations.

We shall begin by comparing thes(mi) values from the
single noise peak analysis (Eq. [33]) with the simulated multi-
noise peak spectra where the noise spectrum has a random
phase and a zero phase for a range of gap values. The spectral
range was 1.2 ppm with a Lorentzian signal where sm1(S) 5
10 and sm2 5 10 ppm22. The noise spectrum was chosen to
be 62.5 ppm about the signal peak. The results are given in
Table 2.

The details presented in Table 2 show that we have very
good agreement between the calculated and simulated results,
especially when the noise phase is random. When the phase is
held constant thes(m1) and s(m4) values appear to be
smaller, especially at smaller gap values.

We may also explore the effectiveness of our model in
predicting the way thes(mi) values vary with spectral range
changes. The details are given in Table 3. Here again the model
is very successful in predicting the outcomes especially for the
random noise case. As before, if the phase is held constant the
s(m1) ands(m4) values appear to be smaller.

Tables 2 and 3 show that Eqs. [39] and [40] may be used
very effectively to predict thes(mi) values for multinoise peak
spectra from the single noise peak data. Agreement is best
when the noise phase is random but for more approximate
results we must show that it is applicable, in many cases, to any
phase. This is important when the simulation process is limited

TABLE 2
Comparison of the s Values in Varying the Gap When S 5 10

Spectrum
Gap

(ppm) s(m1)
s(m2)

(ppm22)
s(m3)
(ppm) s(m4)

Calculated 1.5 0.495 1.17 0.00919 0.406
Simulated 1.5 0.501 1.21 0.00913 0.434
Simulated (*) 1.5 0.482 1.19 0.00825 0.416

Calculated 1.0 0.607 1.43 0.0113 0.498
Simulated 1.0 0.614 1.49 0.0109 0.536
Simulated (*) 1.0 0.542 1.42 0.00935 0.483
Simulated (**) 1.0 0.551 1.45 0.00916 0.495

Calculated 0.625 0.767 1.81 0.0142 0.630
Simulated 0.625 0.778 1.90 0.0142 0.692
Simulated (*) 0.625 0.646 1.89 0.0107 0.627

Calculated 0.5 0.858 2.02 0.0159 0.704
Simulated 0.5 0.891 2.14 0.0158 0.781
Simulated (*) 0.5 0.684 1.86 0.0117 0.637

Note. The calculated values were determined from the single noise peak
analysis given by Eq. [33] using Eqs. [39] and [40]. The simulated noise
spectra were obtained using 6000 multinoise spectra results where the noise
phase was random and held constant at zero indicated by (*). In one case the
phase was held constant at 0.25, indicated by (**).
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to smaller numbers and then it is essential to minimize the
number of random variables when trying to compare the out-
comes from the single and multinoise peak cases.

As a key outcome of our above analysis we may use Eqs.
[39] and [40] to calculate from Eqs. [33] and [34] the expected
s(mi) values when the noise is characterized byxnoise

2 (ppm21)
5 5.85 (random noise)5 10.05 (constant phase) and the gap5
1 ppm. (The factor in this case is 5.85/10.055 0.582.) The
results are obtained, in this case, by multiplying by=2 to give
the s(mi) values

s~m1! 5 0.607p N

s~m2! 5 14.3 p
N

S

s~m3! 5 0.113p
N

S

s~m4! 5 0.498p N.

6 [42]

Similar results apply, using the same multiplier, when the
signal is Gaussian:

s~m1! 5 0.474p N

s~m2! 5 9.48 p
N

S

s~m3! 5 0.100p
N

S

s~m4! 5 0.382p N

6 . [43]

To complete the single peak analysis we shall examine the
effect of changing the signalm2-value (sm2) on the peakmi s
values,s(mi). For the case when the signal is Lorentzian and
sm2 is varied from 5 to 20 we find that fors(m2) we have a
linear relationship. For the others values the relationship is of
the forma 1 b/sm2 1 c p sm2. When the signal height (sm1)
is 10 (S 5 10) and the noise is unity (N 5 1) the results are

s~m1! 5 0.07601 2.84/sm2 1 0.0068p sm2

s~m2! 5 0.4241 0.0601p sm2

s~m3! 5 0.006901 0.0203/sm2 2 0.00011p sm2

s~m4! 5 20.0481 3.44/sm2 1 0.0054p sm2.
6 [44]

The Effect of Many Noise Peaks

We have estimated above the expecteds-values for the four
parameters of a Lorentzian or a Gaussian signal from a single
noise peak. To examine this further, we analyzed 1500 simu-
lated spectra when the noise pattern is randomly generated with
a gap of unity for a specific signal level. In this example the
phase of the noise is set at zero.

By generating 1500 spectra for specificN andS values, we
have shown that for the spectral range of 1.2 ppm and a SNR
between 2 and 20.

Fitting the Lorentzian signal to a Lorentzian lineshape.

s~m1! 5 0.538N 1 34SN5

S4D
s~m2! 5 15.0SN

SD
s~m3! 5 0.0998SN

SD
s~m4! 5 0.490N 1 40SN5

S4D .

6 [45]

The expressions fors(m2) ands(m3) are applicable for SNR
values as small as 2 whereas the expressions fors(m1) and
s(m4) should not be used below SNR5 4. Increasing the
noiseN-value and the signalS-value by the same factor in-
creasess(m1) ands(m4) by the same factor but leavess(m2)
and s(m3) unaltered.

TABLE 3
Comparison of the s Values in Varying

the Spectral Range When S 5 10

Spectrum
Range
(ppm) s(m1)

s(m2)
(ppm22)

s(m3)
(ppm) s(m4)

Calculated 0.75 0.995 1.63 0.0105 0.926
Simulated 0.75 1.02 1.88 0.0102 0.985
Simulated (*) 0.75 0.939 1.78 0.00919 0.910

Calculated 1.2 0.617 1.39 0.0113 0.506
Simulated 1.2 0.614 1.49 0.0109 0.536
Simulated (*) 1.2 0.542 1.42 0.00935 0.483

Calculated 2.0 0.469 1.32 0.0120 0.308
Simulated 2.0 0.459 1.34 0.0115 0.331
Simulated (*) 2.0 0.352 1.29 0.00927 0.275

Calculated 4.0 0.404 1.20 0.0121 0.159
Simulated 4.0 0.385 1.23 0.0115 0.184
Simulated (*) 4.0 0.301 1.02 0.00934 0.136

Calculated 6.0 0.393 1.15 0.0121 0.102
Simulated 6.0 0.376 1.20 0.0119 0.133
Simulated (*) 6.0 0.297 0.950 0.00944 0.0992

Note. The calculated values were determined from the single noise peak
analysis given in Table 1 using Eqs. [39] and [40]. The simulated noise spectra
results were obtained using multi-noise spectra where the noise phase was
random and held constant at zero indicated by (*). The results for the spectral
range 0.75, 1.2, and 2 ppm involved 6000 simulations, the 4 ppm spectral range
involved 4000 simulations, and the 6 ppm spectral range involved 2500
simulations.

395PRECISION OF PARAMETERS IN MEASURING RESONANCE SPECTRA



Fitting the Gaussian signal to a Gaussian lineshape.If we
choose the signal to be a Gaussian lineshape and fit the simulated
spectrum also to a Gaussian peak we obtain the relationships

s~m1! 5 0.416N 1 6.9SN4

S3D
s~m2! 5 10.01SN

SD
s~m3! 5 0.0847SN

SD
s~m4! 5 0.391N 1 7.6SN4

S3D .

6 [46]

As before, the expressions fors(m2) ands(m3) are applicable
for SNR values as small as 2 whereas the expressions for
s(m1) ands(m4) should not be used below SNR5 4. These
results agree well with our predicted values when the SNR is
greater than 5 (see Eqs. [42] and [43]).

To conclude the comparison with simulated spectra we have
been successful in examining the results of 1.2 ppm spectra
where a Lorentzian shaped signal is embedded in a random
noise with random phase wherexnoise

2 (ppm21) 5 5.85 and the
gap5 1.0. For the signal with sm2 5 10 ppm22 and sm1(S)
5 5, 7.5, 10, 15, and 20, thefollowing s(mi) values were
determined from 6000 simulations:

s~m1! 5 0.596N 1 1.58SN3

S2D
s~m2! 5 15.1SN

SD
s~m3! 5 0.111SN

SD
s~m4! 5 0.510N 1 2.41SN3

S3D .

6 [47]

(The R value from the analysis of the five data sets used to
derive Eq. [47] was greater than 0.99 and in the two cases for
thes(m2) ands(m3) values it was greater than 0.999 with an
error of less than 1% in the constants.) We note the very similar
results for the case when the noise phase was set at zero, Eq.
[42]. In Eq. [42] thes(m1) ands(m4) values are lower. Also,
with the greater precision, we observe that thes(m1) and
s(m4) values are slightly dependent on theN/S ratio whenN/S
is less than 0.2. They are markedly dependent onN/S when
N/S is greater than 0.2.

The relationship between thes(mi) values from the single peak
noise analysis and the multipeak noise results greatly simplifies
the effort required to estimate the errors due to random peak noise
in complex NMR spectra. Once we have determined thes(mi)

values as outlined above we are then in a position to estimate, to
a good approximation, the expecteds(mi) values for any signal
in a spectrum just from that spectrum. This may be done by
first examining the spectra under investigation to estimate
xnoise

2 (ppm22) and the gap (the maximum separation of the noise
peaks or from the average number of noise peaks per ppm) and the
N value (the maximum noise height). An estimate of the signal
height then yields the SNR. By using the appropriate equations the
s(mi) values may be predicted.

To conclude this section we examine the effect of changing
the signalm2 value on thes(m2) and s(m3) values. The
change is reflected in the results given in Eq. [44] from the
single noise peak analysis. Using a multipeak noise spectrum
of zero phase yields

s~m2! 5 ~10.391 0.50sm2!~N/S!

s~m3! 5 ~0.09781 0.160/sm2 2 0.00163sm2!~N/S!.
J

[48]

COMPARISON OF THE SIGMAS AND THE RHOS

The next step toward understanding the noise–signal inter-
action is to explore the variance of the sigmas from spectrum
to spectrum with randomly produced simulated noise spectra.
The analysis of each spectrum yields different values and our
sigma equations above suggest that in terms of the peak,m1,
m2, and thes value, we have the relationships

s1 5 slope1 p s

m2

s2
5 slope2 p

m1

s

s3 5 slope3 p
s

m1

s4 5 slope4 p s,

6 [49]

where, in addition, if we use our approximate equations, the
slopes may be written as

slope1 5 H ~Îm2Dx!1/ 2
g@1#

X J
slope2 5 H X

~Îm2Dx!1/ 2g@2#J
slope3 5 HS Dx

Îm2
D 1/ 2 g@3#

X J
slope4 5 H ~Îm2Dx!1/ 2

g@4#

X J .

6 [50]

We may test these relationships by analyzing 100 simulated
spectra with one signal peak and a series of random noise
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peaks. The spectral range was chosen as 1.2 ppm andDx 5
0.02ppm. The Lorentzian shaped signal was defined as sm1 5
10, sm2 5 10 ppm22, sm3 5 5.0 ppm, and sm4 5 0. Dx was
chosen as 0.02 ppm to closely match the experimental spectra.
The four slopes determined by a line of best fit through the
origin, with the approximate solutions in brackets, are

slope1 5 0.731 ~0.740!

slope2 5 0.411 ~0.396!

slope3 5 0.0917~0.0916!

slope4 5 0.809 ~0.823!.
6 [51]

Figure 6 shows a typical result. For the 100 spectra, the peak
m1 value varies between 8.99 and 11.12, the peakm2 between
6.97 and 13.61 ppm22, the peakm3 between 4.97 and 5.03
ppm, and the peakm4 between20.80 and 1.49. The noise,s,
varies between 0.016 and 0.32. The peak mean values arem1

5 10.088,m2 5 10.050 ppm22, m3 5 5.0005ppm,m4 5
0.299, ands 5 0.133. The mean values of thes i-values are
s1 5 0.0969,s2 5 0.328 ppm22, s3 5 0.00122 ppm, ands4

5 0.107. We observed that only 20% of them3 values lie
within the range of 56 2.5 s3 of the true signalm3 value. If
we decreaseDx, the s i values decrease by the ratio
=(Dx/0.02) (see Eq. [21]). For example, whenDx 5 0.002
the s i values ares1 5 0.0302,s2 5 0.101 ppm22, s3 5
0.000368 ppm, ands4 5 0.0335. In this case, less than 10% of
pm3 values lie within 56 2.5 s3. A similar effect occurs for
the othermi values.

Next we compare thes values (s i) from each peak analysis
and themi values and theirs values (s(mi)). The results
obtained from the same set of 1500 spectra are given in Tables
4 and 5. The important result is that thes(mi) values are much
greater than the means i values. The ratios are given in Table
5. This confirmation that thes i values should not be used to
estimate the errors in the overallmi values.

We may test the approximate solutions for thes and r
values for the single peak analysis. We chose a Lorentzian
signal where sm1 5 5 and a multi-peak noise spectrum, and a
series of results is presented in Tables 6 and 7. The set of
results in the brackets and braces is calculated from Eqs. [21]
and [22], respectively. The additional set for the 10 ppm range
is the results given by Eq. [23a]. The multi-peak noise spec-
trum was the same for each spectrum analyzed. Similar results
are obtained for the Gaussian signal case.

The formulas derived for calculating thes andr values for
a single peak analysis given by Eqs. [21] and [22] are appli-
cable to a spectral range at least as small as 1.2 ppm. They are

FIG. 6. Plots of thes3 value as a function involvings as expressed in Eq. [49] from the analysis of 100 spectra with one signal peak and a series of random
noise peaks.

TABLE 4
A Summary of 1500 Peak Sigma Results from 1500 Spectra

Comprising a Signal with S 5 5 and a Simulated Multi-noise
Spectrum Where the Noise Phase Is 0

s1

s2

(ppm22)
s3

(ppm) s4

Range 1.57 4.69 0.0107 1.63
Mean 0.106 0.634 0.00237 0.116
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a considerable improvement over the formulas suggested by
Posener (4) and Chenet al. (5), which are only applicable for
very large spectral ranges and are not applicable toin vivo
NMR analyses where we need to analyze spectra close to a
particular peak of interest. Ther values are of particular
interest; for small spectral ranges,r12 is large and negative. As
the spectral range increases it becomes large and positive,
tending toward a value of 1/20.5. In the Gaussian case it
behaves in the same way but tends to a value of 1/30.5. On the
other hand,r14 is large and negative for small spectral ranges
and approaches zero for large spectral ranges.r24 is large and
positive for small spectral ranges and approaches zero for large
spectral ranges. In the Gaussian caser14 andr24 behave in the
same way. We find the same general pattern for ther-values
for the mi values. A typical set of results is shown in Table 8
for three spectral ranges.

Finally, we shall conclude this section by examining thes
values used to determines1, s2, s3, ands4 in Eq. [9]. We may
estimate the means value from the meanx2 value provided we
know the appropriatex2/xnoise

2 ratio since we can calculate the
xnoise

2 value from Eq. [27]. Thex2 value is approximately
independent of the noise phase chosen. Thex2/xnoise

2 ratio does
vary significantly with the spectral range and is independent of
the signal height. From our simulated spectra when the maxi-
mum separation of the noise peaks is 1 ppm (gap5 1 ppm) we
have the following results, where we have chosen the noise
phase as zero:

1.2 ppm spectral range,k 5 x2/xnoise
2 ratio5 0.10.

4.0 ppm spectral range,k 5 x2/xnoise
2 ratio5 0.27.

10.0 ppmspectral range, k 5 x2/xnoise
2 ratio5 0.34.

Hence in our simulated spectra for the 1.2 ppm spectral range
the means value is given bys 5 { kxnoise

2 /(Q 2 n)} 1/ 2 5
0.145 absorption units, sinceQ 5 61 (Dx 5 0.02) and
n 5 4.

The x2 value reflects the degree of the noise “seen” by the
analysis as part of the peak. This may be illustrated by a very
simple example. If we had a single noise peak with the same
width and position as the signal then the analysis would yield

x2 5 0, because the height of the peak is the sum of the signal
and the noise. Although we have a perfect fit the peak height is
not the signal height. For this reason we must be very careful
in inferring peak information to the signal parameters when
handling such noise.

In addition, thex2 value and, of course, thexnoise
2 value (but

not the meanxnoise
2 value) vary significantly from spectrum to

spectrum. We may explore the smallest likely value from a
series of spectra by considering how thexnoise

2 value will vary
for a specific arrangement of noise peaks. First, the minimum
xnoise

2 value will occur when the noise peaks are at the maxi-
mum separation, i.e., the gap value. If we consider all the peaks
to be the same height,h, and equally spaced about the center
of the spectrum then

TABLE 5
A Summary of 1500 Peak mi Results from 1500 Spectra (1.2

ppm) Comprising a Signal with S 5 5 and a Simulated Multi-noise
Spectrum Where the Noise Phase Is 0

m1

m2

(ppm22)
m3

(ppm) m4

Range 5.90 19.6 0.170 5.97
Mean 5.159 10.137 2.0005 0.222
s(mi) 0.577 2.90 0.0189 0.530
s(mi)/s i 5.4 4.6 8.0 4.6

TABLE 6
A Comparison of the s Values Determined from the Analysis

of a Single Spectrum

Range
(ppm) s1

s2

(ppm22)
s3

(ppm) s4

1.2 0.1100 0.6007 0.002604 0.1222
(0.1146) (0.6159) (0.002609) (0.1273)

2 0.07088 0.6195 0.004075 0.06347
(0.07145) (0.6242) (0.004076) (0.06454)

4 0.05763 0.3767 0.004122 0.02653
(0.05765) (0.3774) (0.004122) (0.02668)

10 0.06943 0.3880 0.004991 0.01426
(0.06943) (0.3881) (0.004991) (0.01428)

` {0.06938} {0.3460} {0.004991} {0}

Note.The results in brackets and braces were determined from the approx-
imate solutions given by Eqs. [21] and [23a], respectively.

TABLE 7
A Comparison of the r Values Determined from the Analysis

of a Single Spectrum

Range
(ppm) r12 r13 r14 r23 r24 r34

1.2 20.797 0.013 20.943 20.010 0.936 20.013
(20.808) (0) (20.947) (0) (0.938) (0)

2 20.162 0.002 20.579 20.002 0.833 20.002
(20.175) (0) (20.588) (0) (0.835) (0)

4 0.388 0 20.186 0 0.675 0
(0.385) (0) (20.188) (0) (0.676) (0)

10 0.615 0 20.035 0 0.451 0
(0.614) (0) (20.035) (0) (0.452) (0)

` {0.707} {0} {0} {0} {0} {0}

Note.The results in brackets and braces were determined from the approx-
imate solutions given by Eqs. [22] and [23b], respectively.
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xnoise
2 5

h22p

DxÎnpm2
H1

4
1 O

n51

` 2

~4 1 npm2n
2!J . [52]

Equation [52] is rather interesting. Whenh 5 1 thexnoise
2 value

(per ppm) given by Eq. [52] is a good approximation of the
results from Eq. [27]. (For the case with a random noise phase
Eq. [52] simplifies to Eq. [26], whereN 5 1.) (As before, to
obtain the xnoise

2 -value (per ppm) when the gap is varied
npm2 3 npm2 p (gap)2.) Table 9 illustrates the similarity of
the meanxnoise

2 value (per ppm) from Eq. [27] and thexnoise
2

value (per ppm) given by Eq. [52] when the gap and the noise
peak npm2 value are varied. In Table 9 the summation in Eq.
[52] is over 1000 terms whereas in Eq. [27] we have used only
the first 12 terms.

From Eq. [52] we may estimate thexnoise
2 value for varying

values of theh value which may be the lowest likely value. For
example, if we compare some 1500 simulated spectra and wish
to estimate thes-value below which only about 1 in 1500s
values occurs we may do this by choosingh 5 ( 1

1500
)1/peak,

where the peak value is the effective number of peaks corre-
sponding to the particular spectral range. The results are illus-
trated for three spectral range examples in Table 10. The three
observed minimumx2 values correspond to thes values 0.005,
0.0697, and 0.1620. As the spectral range increases the range
of thexnoise

2 -value decreases and the minimum value will tend
to the meanxnoise

2 -value. Similar results will apply for any
specific or random noise phase.

The effect of the noise component as reflected above is in
marked contrast to the case when the noise contribution of each
data point has a normal distribution with a zero mean and a
standard deviation equal tos and the noise contribution of
successive data points is uncorrelated. It has been shown that
with such a noise background thiss-value dictates a lower
bound, known as the Crame´r–Rao lower bound (12), and is the
minimum possible value for thes value in Eq. [9].

Such a noise background would be less than 10% of our total
noise component observed in ourin vivo spectra. Thus, if such
a noise background were superimposed upon our simulated
spectra the minimums value would be approximately 0.025.
From our above analysis we would only observe the Cra-
mér–Rao lower bound when the spectral range is rather small,
and in this work it has no real significance.

Finally, in this section we compare our results for a corre-
lated noise example with the case when the noise is uncorre-
lated. We shall focus on the example when the signal may be
described by a Lorentzian function. For the correlated noise
case, with random phase, ourxnoise

2 (ppm21) 5 5.85N2 (or
snoise 5 0.312N) and the gap5 1.0 ppm (snoise 5 { x2Dx/
(spectral range}0.5. Thexnoise

2 value standard deviation is about
5.79N2, which is very large. For a spectral range of 1.2 ppm
the meanx2 value is about1.40N2, yielding a s value of
0.157N. Using Eq. [21] we may estimate the means i values
as approximately

s1 5 0.116N

s2 5 3.95
N

S

s3 5 0.0144
N

S

s4 5 0.129N.

6 [53]

From 6000 simulated spectra we find the following results
when sm1 5 10 andN 5 1, i.e., the noise range is from21
to 1: x2 5 1.40,s1 5 0.101 (0.116),s2 5 0.340 ppm22 (0.395
ppm22), s3 5 0.00126 ppm (0.144 ppm) ands4 5 0.112

TABLE 8
The r-Values for the mi Values Derived from 4500 (1.2 ppm),

1500 (4.0 ppm), and 500 (10.0 ppm) Simulated Spectra with
Multinoise Peaks Where the Signal Was Chosen as Lorentzian
with sm1 5 5, sm2 5 10 ppm22, sm3 5 2 ppm, and sm4 5 0

Range
(ppm) r12 r13 r14 r23 r24 r34

1.2 20.496 20.0287 20.871 0.0353 0.771 0.0346
4.0 0.253 20.010 20.118 20.036 0.623 0.011

10 0.395 20.013 20.088 20.093 0.462 0.029

TABLE 9
A Comparison of the xnoise

2 Value (per ppm21) from Eqs. [27]
and [52] for Three Different Noise Peak m2 Values and Gap
Values

Gap
(ppm)

npm2 5 80 ppm22 npm2 5 10 ppm22 npm2 5 200 ppm22

Eq. [27] Eq. [52] Eq. [27] Eq. [52] Eq. [27] Eq. [52]

1.375 6.38 6.93 31.6 29.2 3.49 4.18
1.000 10.05 10.18 54.7 51.2 5.27 5.91
0.625 20.86 19.52 125.3 126.7 10.2 10.3

TABLE 10
Estimation of the x2 Value below Which Only

about 1 in 1500 x2 Values Occur

Spectral range
(ppm)

Number of
effective peaks

xnoise
2

Value
x2

Value
Observed minimum

x2 value

1.2 2 0.0120 0.0012 0.0015
4 6 3.53 0.95 0.956

10 12 29.8 10.1 13.0a

a The observed minimumx2 value when the spectral range was 10 ppm was
from only 500 simulated spectra.
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(0.129). The results in brackets are from Eq. [53] and consid-
ering the approximations involved show remarkable agreement
between the calculated and mean sigma observed values.

Next we turn to the case when the noise is uncorrelated. If
the noise height randomly varies between2N and N with a
uniform distribution thenxnoise

2 5 {(spectral range)/Dx 1

1}( 1
3
) 5 20.33N2, snoise 5 0.582N. The standard deviation

of thexnoise
2 -value may be expressed as {(spectral range)/Dx 1

1} 0.5(2/(3=5)), which is 2.33 when the spectral range is 1.2
andDx 5 0.02. But inthis case, we would expectx2 5 xnoise

2 .
From 6000 simulations we find that, when the spectral range is
1.2 ppm, x2 5 19.0N2 instead of 20.33N2. (This small

FIG. 7. Plots of them values from the analysis of the single peak from 4500 simulated spectra where the signal was expressed by Eq. [2] with sm1 5 5,
sm2 5 10 ppm22, sm3 5 2.0 ppm, and sm4 5 0. The spectral range was 1.2 ppm. (a)m2 versusm1 and (b)m4 versusm3.

400 GOLDING AND GOLDING



reduction is in marked contrast to the very large difference that
occurs in the correlated case.) Using thisx2 value we may
estimate the means i values, and hence thes(mi) values, from
Eq. [21]. (Thes value is given by Eq. [12].) The results are

s1 5 s~m1! 5 0.427N

s2 5 s~m2! 5 14.6
N

S

s3 5 s~m3! 5 0.0529
N

S

s4 5 s~m4! 5 0.475N.

6 [54]

(As the spectral range increases the numbers in Eq. [54] tend to
the following: 0.4273 0.164, 14.63 4.63, 0.05293 0.0518,
and 0.4753 0.)

From the 6000 simulations when sm1 5 10 we finds1 5
s(m1) 5 0.418 (0.427),s2 5 s(m2) 5 1.42 ppm22 (1.46
ppm22), s3 5 s(m3) 5 0.00526 ppm(0.00529 ppm), ands4

5 s(m4) 5 0.464 (0.475). Theresults in brackets are from
Eq. [54]. We find very good agreement. If the random height
distribution of the uncorrelated noise were a normal distri-
bution, with a standard deviation ofs, then the numbers in
Eq. [54] would be multiplied bys=3 to give the equivalent
means i values and hence thes(mi) values. For a normal
distribution with a zero mean ands 5 0.50, about 95% of
the noise height lies between21 and 1. In this cases=3 5
0.866. An important aspect is that Eq. [47] cannot be ob-
tained from Eq. [54], or Eq. [53], using a single multiplying
factor, e.g., 15.1/14.65 1.03, whereas 0.111/0.05295 2.14.

This section has shown that we have been able to derive
equations to successfully predict the standard deviations of
the peak parameters. These equations are expressed as func-
tions of the maximum (or minimum) noise height (N), where
the noise varies randomly from2N to N, and the signal
height (S), where the noise may be described as uncorrelated
or correlated. The differences between the eight sigmas for
the correlated and noncorrelated noise patterns are very
significant.

RELATIONSHIP BETWEEN THE MULTI-PEAK AND
SINGLE PEAK NOISE ANALYSES

In an earlier section we showed how to derive the stan-
dard deviation of each of the fourm values arising from a
noise spectrum comprising multinoise peaks generated ran-
domly from a single noise spectrum and a three noise
spectrum. In this section we shall explore the errors ex-
pected in the fourm values in a different way. Using a large
series of simulated spectra with a single signal superim-
posed on a multinoise peak spectrum (random peak height
and position) we may readily determine the range of them

values. This is illustrated by plotting a couple of differentm
values obtained from a large number of analyses. Figures 7a
and 7b illustrate the spread of them values obtained from
the analysis of 4500 simulated spectra for the case when the
spectral range is 1.2 ppm and the Lorentzian signal has the
parameters sm1 5 5, sm2 5 10 ppm22, sm3 5 2 ppm, and
sm4 5 0. Thesem plots form very characteristic patterns
and highlight the spread and the frequency of the results.
The range of results given in Table 5 is reflected in these
plots.

If we use a single noise peak of a specific height,N, and
determine the effect of this noise peak on the measurement
of the peak parameters we obtain a set of contours for the
two m-plots, as shown in Figs. 7a and 7b. These are shown
in Figs. 8a and 8b. The correspondingm-plots are very
similar and mirror the complex patterns. The majority of the
data points are within the contour ofN 5 1.5 and almost all
are within the contour ofN 5 2.0. Using the valueN 5 1.5
we obtain

m1 5 5 6 1.21

m2 5 10 6 6.35

m3 5 2 6 0.0528

m4 5 0 6 1.24.
6 [55]

These results are very close tomi 6 2s(mi). Hence this
simple approach may readily yield the expected errors in the
mi-values describing a particular signal obtained from the
analysis of a peak, a composite of random noise and the
signal. In addition, it reinforces our approach in predicting
the appropriates(mi) values from the single noise peak
analysis.

CHARACTERIZATION OF THE PEAK LINESHAPE

We next examined the analysis of either a Lorentzian or a
Gaussian lineshape and then used the two results to gain
information about the peak’s lineshape. With this in mind, we
analyzed a Gaussian and a Lorentzian peak superimposed on
the usual random Lorentzian noise spectrum and fitted the
result to a Lorentzian and a Gaussian peak. The signal height
(sm1) range was from 2 to 20 with a 1.2 ppm spectral range.
For them1 values we obtained, using a Lorentzian signal (R 5
0.9996),

m1-Lorentzian fit5 1.306p m1-Gaussian fit. [56]

Using a Gaussian signal (R 5 0.9995), weobtained

m1-Lorentzian fit5 1.406p m1-Gaussian fit. [57]
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Although the errors in them2 values are greater, we find a
similar relationship. For the case when the signal is Lorentzian
(R 5 0.978),

m2-Lorentzian fit5 24.1 1 0.98 p m2-Gaussian fit, [58]

and for the Gaussian case (R 5 0.968),

m2-Lorentzian fit5 22.5 1 0.83 p m2-Gaussian fit. [59]

These results are clearly different and, where appropriate, may
be used to determine the best peak shape from the analysis of
the experimental data.

ANALYZING IN VIVO 31P MRS SPECTRA

We conclude this paper by examining six sets ofa- and
b-ATP 31P MRS measurements obtained from rat brainin vivo,
where each set is a series of nine measurements over a 4 h
period following moderate fluid percussion-induced brain in-
jury. Each set consists of an average of acquisitions in 30 min
blocks obtained over a 4 hperiod after the injury. The 5431P
MRS spectra were analyzed with thea- andb-ATP 31P peaks
at the center of a small spectral range for a Lorentzian and a
Gaussian lineshape. A typical analysis—theb-ATP 31P peak in
Fig. 1—yields, for a Lorentzian lineshape,m1 5 8.62 3
1025, s1 5 2.22 3 1026 (2.45 3 1026), m2 5 4.22
ppm22, s2 5 0.246 ppm22 (0.265 ppm22), m3 5 216.164
ppm, s3 5 0.00178 ppm (0.00180 ppm),m4 5 29.65 3
1026 and s4 5 2.37 3 1026 (2.61 3 1026). The values in
brackets are calculated from Eq. [21], where the spectral range
is 1.206 ppm ands 5 1.103 1026. The good agreement is in
marked contrast to the results of Chenet al. (5).

We may extend our peak analysis to thea- andb-ATP 31P
peaks in a single spectrum where we select two portions each
about 1.2 ppm, one with thea-ATP 31P peak near the middle
and the other with theb-ATP 31P peak close to the middle of
its spectral range. A typical set of results, fitting a Lorentzian
lineshape to the two peaks, is given below.

a-ATP 31P peaks b-ATP 31P peaks

m1 5 6.76 3 1025 m1 5 10.3 3 1025

s(m1) 5 1.94 3 1026

(2.22 3 1026)
s(m1) 5 2.92 3 1025

(3.92 3 1025)
m2 5 8.126 ppm22 m2 5 1.04 ppm22

s(m2) 5 0.734 (0.807) ppm22 s(m2) 5 0.400 (0.521) ppm22

m3 5 27.534 ppm m3 5 216.051 ppm
s(m3) 5 0.00347 (0.00340) ppm s(m3) 5 0.00648 (0.00600) ppm
m4 5 1.91 3 1024 m4 5 22.38 3 1026

s(m4) 5 2.14 3 1026

(2.45 3 1026)
s(m4) 5 2.96 3 1025

(3.96 3 1025)
s 5 2.053 1026 s 5 2.083 1026

Spectral range5 1.179 ppm Spectral range5 1.206 ppm
Number of data points5 45 Number of data points5 46

The approximates values are given in brackets. The sepa-
ration between thea- andb-ATP 31P peaks (dab) is used often
for specific information inin vivo NMR and in this spectrum
we have the resultdab 5 8.517 ppm. Thes value is given by
{( s3(a-ATP))2 1 {( s3(b-ATP))2} 0.5, which is 0.00735 ppm.
This gives us the error in the peak separation. To determine the
error in the signal separation we need to determine thes(m3)
values for both signals. Using them1 values as an approximate
measure of the signal height (theS value) and estimating the
noise level relative to the signal, we may estimate the SNR for
both cases as 8.5 and 12.9 for thea- and b-ATP peaks,
respectively. (We note that this spectrum is one of the better
spectra, where the SNR is relatively large for this type of work.
The noise level was determined from each spectrum by esti-
mating the noise height range, which corresponded to the 2N
value.) From Eq. [47], we then determine an approximate
s(m3) value for thea-ATP, s(m3)a 5 0.0086 (0.110/12.9).
In the b-ATP case we need to take into account the smallm2

value. From Eq. [48], we would obtains(m3)b 5 0.0294 ppm
(0.250/8.5). Equation [48], however, has not been tested for
such smallm2 values. Hence to check the result of 0.0294 ppm
we may derive the appropriate equation by carrying out the
interaction of the single noise peak with a signal withm2 5
1.04 ppm22, as described earlier, obtaining equations similar
to Eq. [33]. For thes(m3) value we obtains(m3) 5 0.330(N/
S). In this cases(m3)b 5 0.0388 ppm(0.330/8.5). We shall
use this result. Thes(m3) value for dab is given by
{( s(m3)a)2 1 {( s(m3)b)2} 0.5, which is 0.0397 ppm. Hence
we estimate thatdab 5 8.5176 0.079 ppm (62s). Hence we
would expect thedab value to lie between approximately 8.44
and 8.60 ppm.

This dab result is from the first of a series of nine observa-
tions following injury. The nine values (in ppm) are 8.517 (0),
8.518 (0.5), 8.531 (1.0), 8.548 (1.5), 8.565 (2.0), 8.525 (2.5),
8.565 (3.0), 8.541 (3.5), and 8.594 ppm (4.0), where the time
in hours after injury is given in brackets. It may be tempting to
show a possible small time dependence from a regression
analysis. However, the meandab of the nine values yieldsdab

5 8.545 ppm with a standard deviation of 0.0258 ppm. Our
estimate of the expected errors due to noise in the spectrum
gives the larger value of 0.0397 ppm and hence we can rule out
any time dependence over the 4-h period. All the ninedab

values lie within the expected range. (Note that thes value
from the particular spectrum is 0.00735 ppm, which is much
smaller than the experimental error,s(m3)ab, of 0.0258 ppm
and even smaller than the estimateddab error, s(m3)ab, of
0.0308 ppm due to noise in the spectrum.)

The analysis of all theb-ATP peaks yields the results in
Tables 11 and 12, assuming Lorentzian and Gaussian line-
shapes, respectively. We note that thes values from the single
analysis given above are much smaller than those for the
averagemi values given in Table 11. For the Lorentzian case
them2 value is much less than 10 and hence we shall use Eq.
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[48] to take this into account in determining thes(m2) and
s(m3) values.

We note from our example thats(m3)a and s(m3)b are
similar and we may approximately writes(m3)ab, thes value
for thedab value, ass(m3)b

=2. Using a SNR value of 3 and
the meanm2 value we find that thes value would be about

0.065. This is larger than the experimentally determined value
given in Table 11. Likewise, we estimate, using the meanm2

value of 3.5 ppm22 and a SNR of 3, thats(m2) 5 4.05.
For the Gaussian case we estimate an averagedab value
of about 0.040 ppm and as(m2) value of approximately
3.34 ppm22.

FIG. 8. Two m plots for the result of the interaction of a single noise peak on the signal with sm1 5 5, sm2 5 10 ppm22, sm3 5 2 ppm and sm4 5 0.
The height of the noise peak has been chosen asN 5 0.5, 1.0, 1.5, and2.0. The shortest contour is whenN 5 0.5 and the longest contour whenN 5 2.0.
(a) m2 versusm1 and (b)m4 versusm3.
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We may even simplify such an analysis of results to give
a rough estimate of the errors in thedab value. This is easy
to carry out and is a quick method to give an insight into the
magnitude of the likely errors. Here we shall consider only
the Lorentzian case. Let us assume that them2 value for
theb-ATP peak may be about 3.5 ppm22. Assuming that the
a- and b-ATP 31P peaks have the same SNR, then the
s(m3)ab may be expressed as0.163(N/S) since for thea-ATP
31P peaks(m3) 5 0.111(N/S) (from Eq. [47]) and for the
b-ATP 31P peaks(m3) 5 0.120(N/S) (from a single noise
peak analysis). If some of the spectra have SNR5 3, the
smallest value we observed, we have the results(m3)ab 5
0.054,which is slightly greater thans(m3)ab 5 0.052given
in Table 11.

Thus, when compared to our estimate of the expected stan-
dard deviations, them2 and m3 values of our experimental
values strongly suggest that the differences between the 54
experimentalm values can be easily attributed to errors due to
noise in the spectrum. Therefore, any effect due to the brain
injury, in this case, must be less than the errors associated with
the noise in the spectrum.

CONCLUSIONS

In this paper we have derived simple general formulas with
which to determine the standard deviations (thes i values) and
the correlation matrix elements (ther ij values) for the param-
eters used to define a specific peak in a MRS spectrum. In
addition and, more importantly, we have shown how to deter-
mine, by several methods, the errors (thes(mi) values) in
these parameters when they are used to estimate a set of
parameters to describe the signal within the peak. These errors
arise from the effect of complex correlated noise spectra on the
signal measurements. We have presented the general form of
thes(mi) values and have shown that they reflect the average
noise pattern across the spectrum and not within the vicinity of
the peak, as is the case for thes i values.

The s(mi) values may be evaluated by analyzing a large
number of simulated spectra. However, we have developed
a much quicker method whereby thes(mi) values may be
determined, to a good approximation, by considering the
effect of a single noise peak on the signal. This then leads

directly to an estimate of thes(mi) values for a peak from a
single MRS spectrum following an estimate of the SNR plus
knowledge of the noise standard deviation and the correla-
tion length or, in the terms used in this paper,xnoise

2 (ppm21)
and the gap values. Hence our results give a ready means of
estimating the error in a particularmi value from a single
MRS spectrum.

Finally, we have illustrated how knowledge of thes(mi)
values may be used to readily assess the significance of a set of
experimental results derived fromin vivo 13P MRS spectra.
What has emerged from this work is the knowledge that the
errors in determining the signal parameter in a spectrum with
correlated noise, where the SNR is small, are much larger than
expected and cannot be ignored. Thus as this situation is
observed frequently in31P in vivoMRS our work demonstrates
that any interpretation, for example, of the chemical shift
difference between thea- and b-31P in ATP is most likely
meaningless unless it is coupled with a careful assessment of
the likely errors. In such papers it should be mandatory to use
a statistically precise method in determining the signal param-
eters and a reliable estimate of the errors due to the correlated
noise.
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